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Abstract: In this study, we implemented an unsupervised deep learning method, the Noise2Noise
network, for the improvement of linear-array-based photoacoustic (PA) imaging. Unlike
supervised learning, which requires a noise-free ground truth, the Noise2Noise network can
learn noise patterns from a pair of noisy images. This is particularly important for in vivo PA
imaging, where the ground truth is not available. In this study, we developed a method to generate
noise pairs from a single set of PA images and verified our approach through simulation and
experimental studies. Our results reveal that the method can effectively remove noise, improve
signal-to-noise ratio, and enhance vascular structures at deeper depths. The denoised images
show clear and detailed vascular structure at different depths, providing valuable insights for
preclinical research and potential clinical applications.
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1. Introduction

Photoacoustic (PA) imaging is a biomedical imaging method that combines the advantages of
high-contrast optical imaging and high-resolution ultrasonic imaging [1]. PA imaging is based on
the PA effect, which involves the absorption of short-pulsed laser light by biomolecules such as
hemoglobin, lipid, or melanin, causing local thermoelastic expansion and generating ultrasonic
acoustic waves [2]. The acoustic signals are detected by ultrasound transducer arrays and then
digitized for image reconstruction.

Endogenous contrasts, such as hemoglobin, are used in PA due to their high optical absorption
coefficients at specific wavelengths. This allows PA imaging to visualize deep underlying
structures, making it a valuable tool in various preclinical and clinical applications. The main
advantage of PA imaging is its ability to provide high-resolution and high-contrast images with
deep penetration, which makes it particularly useful for biomedical applications such as brain
imaging, tumor detection, and foot ulcer imaging [3–5]. However, since the PA signals are
much weaker than pulse-echo ultrasound, PA imaging also faces challenges in signal-to-noise
ratios (SNR). The reduced SNR is particularly evident at increasing imaging depths due to light
attenuation. In addition to thermal noise, electromagnetic interference (EMI) from the excitation
laser might also affect the SNR [6]. These factors collectively influence the quality of PA images,
resulting in challenges in clinical translation [7]. Several methods have been proposed to improve
SNRs. Traditional approaches include median filtering, Gaussian filtering, and wavelet filtering
[8–10]. However, these methods may not always be effective in removing all noise sources and
may result in image quality losses [11,12].

Recently, machine-learning-based methods have also been widely used for denoising. These
methods can be classified as either supervised learning or unsupervised learning. Supervised
learning is a prevalent approach in the field of image processing and computer vision for denoising
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tasks [13–15]. This approach involves training a neural network using a labeled dataset of noisy
and clean image pairs [16,17]. The neural network is trained to predict a clean image as output
by giving the noisy image as input. However, a primary challenge with supervised learning is the
need for noise-free ground truth, which is impossible to obtain for in-vivo experiments [18,19].
Due to this limitation, most supervised denoising algorithms in PA utilized simulation data
generated by the MATLAB-based K-wave toolbox [20]. The algorithm’s success relies heavily
on the accuracy of the simulation and the prior knowledge of noise patterns in the experimental
system [18]. Therefore, the trained model performs poorly when the simulated noisy pattern
cannot fully mimic the experimental noise [21].

On the other hand, unsupervised learning does not require clean experimental data for its
training process [22–25]. It can be effectively trained using only experimental data, eliminating
the need for simulated data generation. The Noise-2-Noise (N2N) network is an example of
unsupervised learning. N2N uses neural networks to find patterns in pairs of noisy images, each
with its own noise level or type. This approach allows for efficient noise removal and versatility in
different scenarios, making it particularly useful for in vivo studies where the noise-free ground
truth is absent [26–29]. The N2N network has been successfully applied in various imaging
modalities, including Magnetic Resonance Imaging (MRI) [30,31], Computed Tomography (CT)
imaging [32], and Ultrasound [32]. Most N2N studies need two images captured under identical
conditions but with different noise levels [33]. This strategy is impractical for in vivo PA imaging
due to body movement.

To resolve this issue, we developed a data generation method that can provide a pair of
low-noise and high-noise images from a single in vivo dataset. The ultimate goal is to enhance
the visibility of deep vessels in PA images, as light attenuation makes these vessels hard to
differentiate from the background noise. To validate our method, we first trained a simulation
model using simulated data incorporating experimental noise. As ground-truth information
is available in the simulation dataset, we can thoroughly verify our approach. Then, another
independent experimental model was trained using only in-vivo data, and we quantified the
performance through SNR analysis. Our results demonstrate the high potential of the model for
denoising PA in vivo images.

2. Methods

2.1. System setup

The photoacoustic images were acquired from the dual-scan foot photoacoustic imaging system
[5]. The system consists of a customized linear-array transducer (Imasonic SAS, France) with
128 elements and a 2.25 MHz central frequency. A portable Nd: YAG laser (Big Sky Laser)
is utilized as the light source. The laser operates at a frequency of 10 Hz with a pulse duration
of approximately 8 ns and an emission wavelength of 1064 nm. The PA signals are captured
by a 256-channel data acquisition unit (PhotoSound Technologies Inc.) operating at a 40 MHz
sampling rate. The synchronization between the data capturing and laser pulse is achieved
through trigger signals from the laser. The entire mobile platform comprises a scanning head
connected to a translation stage and driven by a stepper motor to perform linear scanning.

2.2. Deep-learning models

2.2.1. Noise2Noise model

In the image-denoising task, the general idea is to take a noisy image as γ = χ + ϵ, where γ is the
noisy image, χ is the clean photoacoustic image, and ϵ is random variable noise. To estimate the
unknown χ, we can collect a n set of noisy photoacoustic images [γ1, γ2 . . . , γn] from the same
fixed region. In supervised learning, the most common way is to find the estimated average χ̂ by
minimizing the expectation (E) of deviation from the observations, as determined by a specific
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loss function (L). The loss function can be described below as Eq. (1):

arg min
χ̂
Eγ{L(γ, χ̂)} (1)

Here, L2 loss is the most commonly used loss function and can be defined as: L(γ, χ̂) = (χ − γ)2.
Then, a supervised learning neural network f with network parameter θ can retrieve clean image
χ from training pairs (γi , χi) by solving the point estimation problem [34]. The training process
can be expressed in a mathematical way as Eq. (2):

arg min
θ
E(γ, χ).{L(fθ (γ), χ)} (2)

This method requires a clean ground truth χ for training, and it only works well when the
dataset is large enough with well-labeled ground truth. However, if the noise ϵ, such as Gaussian
noise, has an expectation with a mean of zero, Eq. (2). can be rewritten and decomposed into
Eq. (3). The output result remains unchanged, as shown in Eq. (3).:

arg min
θ

1
n

n∑︂
i=1

(fθ (χi + ϵia) − (χi + ϵib))
2 (3)

Here, χi is the unknown noise-free image of scene i, and ϵia, and ϵib are two independent
noises from the same scene. They may have different amplitudes, but their mean value should be
zero. The network fθ determines the average of all potential functions by minimizing the L2
loss in Eq. (3), enabling it to effectively separate the clean image χ from noisy image γi pairs
[26]. Eventually, the network will approximate the target expectation χ̂, similar to the supervised
method. This concept has been utilized for training deep denoising models when a clean target is
absent [29].

2.2.2. Unet model

For comparison, we also trained a CNN model with a U-Net structure specifically designed for
medical image denoising [35–37]. This supervised learning model requires labeled datasets for
training. For experimental results, since we do not have the noise-free ground truth, we use the
reconstructed images as targets and noise-enhanced images as inputs. Here, the noise-ehanced
images were obtained by adding experimental noise to the reconstructed data, similar to the
method proposed in [38].

2.3. Model training

We developed models based on the N2N concept using PyTorch, training two separate models
for simulation and experimental datasets, respectively. Both models used the same training
strategy, each adapted to its respective dataset type. As shown in Fig. 1, the network has five
convolution pooling layers, which have the same size as the convolution up-sampling layers
[39–41]. The construction of a deep regressor between the input and output is achieved by
utilizing the U-Net architecture structure [42,43]. We configured the input and output channels
to handle single-channel image data (grey-scale image) with dimensions of 400× 860× 1. Here
400 refers to the pixel number along axial direction while 860 refers to the pixel number along
elevation direction. No batch normalization or dropout techniques are employed during training,
but skip connections are utilized to improve the resolution of the final output images [44,45].

LeakyReLU is preferred over ReLU in our model because it allows for a small gradient when
the neuron’s activation is negative, preventing neurons from dying—a common issue with ReLU,
where neurons stop learning [46–48]. MaxPool2d is used for its downsampling capability, which
reduces computational complexity and helps the network extract and focus on the most salient
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Fig. 1. Overall data generation and training structure of the Noise2Noise Network. Step 1:
Prepare the input pairs from the original B-scan images. Step 2: Feed image pairs into the
trained network model. Step 3: Output the result and stack images for 3D visualization.

features, which is essential for distinguishing noise from the signal. ConvTranspose2D serves
to upsample the feature maps, increasing their spatial resolution for the reconstruction of the
denoised image, effectively reversing the downsampling effect of MaxPool2d. Skip connections
in the U-Net architecture, as shown in Fig. 1, enhance image resolution by facilitating the flow
of information from earlier to later layers within the network. It provides a direct connection
between the down-sampled and up-sampled feature maps, resulting in improved resolution and
performance.

The model does not include batch normalization or any other regularization techniques, despite
their proven effectiveness in supervised learning tasks like classification and segmentation. This is
because in studies involving super-resolution and denoising, where noise and signal intensity are
similar, including a batch normalization layer can sometimes result in undesirable outcomes [49].
Specifically, it may fail to improve the final output and instead blend the noise and signal together,
thereby diminishing the effectiveness of the training process. Meanwhile, batch normalization
will increase the training time significantly.

For unsupervised learning in our model, these layers enable the network to learn robust feature
representations from noisy data without requiring clean targets, facilitating the reconstruction of
high-quality images. The combination of LeakyReLU with MaxPool2d and ConvTranspose2D
allows the network to handle a wide range of noise patterns and restore intricate details, improving
the overall denoising process. For PA imaging, the major two noise types are EMI and thermal
noise. The later is presented as Gaussian noise.

We set the learning rate as 0.001 for training the simulation dataset and the in-vivo dataset.
The training was conducted in a workstation with AMD Ryzen 9 3950X CPU, 128 GB RAM,
and two NVIDIA GTX3090 Ti graphics cards.

Figure 1 illustrates the overall workflow of the Noise2Noise network. The process starts
with the captured B-scan images, which are then processed to generate noise-enhanced input
pairs. These pairs undergo a series of convolutional operations, including down-sampling and
up-sampling steps linked via skip connections to preserve detail across layers. The final output is
stacked to create a 3D volume, which highlights the vascular structure.
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2.4. Dataset

2.4.1. Simulation dataset

First, we trained a model based on simulation data. The ground-truth from simulation allowed us
to validate our training strategy before training another model for the experimental dataset.

In simulation dataset generation, the three-dimensional vascular matrices were generated by the
Insight Segmentation and Registration Toolkit (ITK) [50]. After setting the number of branches,
nodes, direction, and vessel volume, the toolkit generates the formation of vessels in 3D space
with varying diameters and densities. This 3D image is used as the input for K-wave simulation,
and we assume that the pixel amplitude of each pixel is proportional to the optical absorption
coefficient. To create PA data from the vascular patterns, we utilized the K-Wave toolbox, a
MATLAB-based tool for photoacoustic simulation [51]. The arc-shaped transducer is assumed to
scan along the elevational direction with step size of 0.1 mm. The B-scan image is generated by
assembling A-lines sequences. Detailed simulation processes can be found in previous work [52].
The transducer’s height and pitches are 15 mm and 0.67 mm, respectively; the acoustic focus of
the transducer is set at 40 mm; the transducer bandwidth is 65%; the sampling rate is 9 MHz; the
central frequency of the transducer is 2.25 MHz; and the transducer scanning step size is 0.1 mm.
These simulation parameters are similar to those of the experimental transducer. In this study,
we generated 20 volumetric vessel data, data was simulated with size of 50× 50× 50 mm at a
pixel resolution of 0.1 mm. Then, we sliced the 3D data into cross-sectional views. A total of
10,000 (500× 20) cross-sectional images were generated for the training. Figure 2(a) shows the
maximum amplitude projection (MAP) of one noise-free data, which serves as the ground truth.

Fig. 2. Stimulated training dataset. (a) The ground truth data in MAP view, (b) Training data
with minimal experimental noise in MAP view (c) Training data with enhanced experimental
noise in MAP view. (d)-(f) are axial-lateral cross-sectional views along the red line in a-c,
respectively.

For training, we generated a pair of noisy images. To mimic the experimental condition, noise
captured from the experimental setup was randomly added to the simulated 3D data. To ensure
that the two images have different levels of noise, we applied different weighting factors to the
experimental noise before adding them to the simulated data. To better mimic the low SNR at
deep tissue, we further supplemented the data with Gaussian noise, using MATLAB functions
(awgn) [53,54]. Exemplary input pairs are shown in Figs. 2(b) and 2(c), and the corresponding
cross-section views are shown in Figs. 2(e) and 2(f), respectively.
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In this study, we reserved 10% of the simulation data as the testing set to evaluate the
performance of the simulation model. The 10% division was chosen because unsupervised
learning focuses on evaluating the model’s ability to discover patterns and relationships within
the data rather than making predictions. Using a smaller testing set, compared to the typical 20%
required for supervised learning, has a significant advantage when the in-vivo data size is limited.

2.4.2. Experimental dataset

After the model was validated in simulation testing dataset, we further trained another model
using experimental dataset only, where ground truth was not available. All experimental data
was captured by the dual-scan photoacoustic foot imaging system [5]. We selected data from 20
subjects and 5 phantoms. All subject data was captured at 2.7W, while the phantom data was
captured using five different optical fluence maximum power outputs, ranging from level 5 to
level 1: 2.7W, 2.56W, 1.44W, 1.01W, and 0.65W.

The pencil lead phantom was constructed using a mixture of 4% agar gel and 96% water,
designed to mimic human soft tissue’s acoustic and optical properties [55]. Within this phantom,
four pencil leads, each with a diameter of 0.5 mm, were embedded in the gel to simulate the
vessels beneath the human skin. These pencil leads were spatially separated by 10 mm along
both elevation and axial directions, as shown in Fig. 3.

Fig. 3. Pencil lead phantom with each lead spaced 10 mm apart along the elevation and axial directions. The 
ultrasound transducer scans the phantom from the top.Fig. 3. Pencil lead phantom with each lead spaced 10 mm apart along the elevation and

axial directions. The ultrasound transducer scans the phantom from the top.

In this study, our network training begins with experimental datasets and their corresponding
noisy pairs. Here, the original image refers to the initial B-scan image captured from the
system, and the noisy pair is generated by adding noise to the original image. To ensure the
network’s robustness in handling diverse noise patterns encountered in practical scenarios, we
incorporated data with different noise levels to generate noisy reconstructed data. All in-vivo data
reconstruction starts at a depth right above the skin. After the scan, we utilized back projection to
reconstruct each B-mode image. Then, the reconstructed images were stacked along the elevation
direction to form a 3D image for maximum amplitude project (MAP). For denoising purposes,
we denoised each reconstructed B-mode image before stacking them into the 3D form [56]. Each
3D image has a matrix size of 400 (axial)× 860 (lateral)× 500 (elevational).

The complete data generation process is illustrated in Fig. 4. First, we randomly selected
experimental noise from different regions of the original data. Then, we applied a random
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weighting factor to the noise and incorporated it into the data to generate the noisy pair. The
random weighting factor further enhances the diversity of our dataset. In the last step, we
reconstructed the original image and the corresponding noisy pair before feeding them into the
network for training. Because the noisy pair was generated by adding noise to the original data,
we can ensure it has a lower SNR than the original one. The whole dataset is made up of 12,500
(500× 25) unique B-scans, and the noisy pair matches this with another 12,500 B-scans, leading
to a total of 25,000 images as training pair for model. It should be noted that both the original
data and its noisy pair contain experimental noises. Unlike supervised learning, there are no
noise-free images in our training input.

 
Fig. 4. Dataset generation flowchart. The top row shows the raw PA data, where the object-containing region 

(blue) is combined with the pure noise region (orange) to generate the noise-enhanced image. The bottom row shows 
the reconstructed PA images before and after noise enhancement.

Fig. 4. Dataset generation flowchart. The top row shows the raw PA data, where the
object-containing region (blue) is combined with the pure noise region (orange) to generate
the noise-enhanced image. The bottom row shows the reconstructed PA images before and
after noise enhancement.

During the training phase, we first normalized and upsized each B-scan image to 1024× 1024
pixels. Then, these images were partitioned into smaller segments, each with 128× 128
pixels. To ensure continuity, we intentionally overlapped these segments by 50% to prevent any
discontinuities in the result. Furthermore, we used an adaptive histogram algorithm to improve
the visualization of our image outputs. This technique was especially helpful for enhancing the
visibility of deeper tissue vessels, which are typically harder to distinguish due to their darker
appearance.

2.5. Evaluation metric for simulation and experimental data

To quantitatively evaluate the performance of the proposed N2N network with the simulation
dataset, we used the Structural Similarity Index (SSIM), Mean Absolute Error (MAE), and Peak
Signal-to-Noise Ratio (PSNR) as shown in Table 1 [6]. The mean squared error (MSE) metric
measures the average difference between the actual and predicted pixel values of the denoised
images. The lower the MSE, the more accurate the network’s denoising ability. The PSNR is
calculated between the simulated ground truth, noisy input image, Gaussian denoised output, and
network denoised output result [6]. The PSNR function is described as:

PSNR = 10 × log(
MAX2

MSE
)
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where MAX is the maximum possible pixel value of the image, and PSNR is expressed in decibels
(dB). Third, SSIM quantifies the similarity between original and processed images, assessing
structural integrity to evaluate denoising effectiveness. The result is represented on a scale of 1
[57–59].

As both the in-vivo and phantom data were captured using the same experimental setup, we
assume they exhibit similar noise patterns. For the experimental dataset, we have 20 human
subject data and 5 phantom data as the training dataset. Data from 2 more subjects and 1 phantom
were used as the testing dataset. For the phantom test data, we treat the maximum power captured
results as the ground truth and the low power captured as noisy input. The performance of the
network was evaluated using full width at half maximum (FWHM), PSNR, SSIM, and MSE. For
the in-vivo test data, where ground truth is unavailable, we evaluate our results by measuring the
SNR across various depths within selected regions of interest (ROI).

3. Results

3.1. Validation with simulation data

We first evaluated the performance of the simulation-data-trained model. Figure 5(a) displays
a noise-free image, which serves as the ground truth. Figure 5(b) is the corresponding noisy
image input. The noise intensity is occasionally higher than the vessel signal, which creates a
challenge for traditional denoising methods, such as the Gaussian filter [28,60]. As shown in
Fig. 5(c), the small vessels were blurred, and the difference between the noise and signal could
not be distinguished. In contrast, our network was able to successfully detect the differences
between the vessel signals and the noisy signals and generate a clean denoised image, as shown
in Fig. 5(d).

 
Fig. 5. Simulation testing dataset. (a): MAP of the noise-free data as ground truth. (b): The noisy image was 

generated from the ground truth image by adding experimental noise. (c): Gaussian filter denoised result. (d) 
Noise2Noise denoised result.

Fig. 5. Simulation testing dataset. (a): MAP of the noise-free data as ground truth. (b):
The noisy image was generated from the ground truth image by adding experimental noise.
(c): Gaussian filter denoised result. (d) Noise2Noise denoised result.

Comparison between the two denoising outputs demonstrates that the N2N network outperforms
Gaussian denoising filters in terms of both PSNR and SSIM. This performance met our
expectations as the network was trained using different levels of experimental noise, while the
Gaussian filter simply smoothed the image.
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As Table 1 shows, the PSNR value of the N2N-denoised image is significantly higher than
those of the Gaussian filter-denoised images and the noisy input. The results demonstrate that the
network’s denoising performance significantly surpasses traditional methods. The N2N method
has an SSIM of 0.841. This shows a major improvement in keeping the structure and texture
clear in denoised images. Higher SSIM values mean the denoised image is more similar to the
original. In terms of MSE, the N2N network’s MSE value is 13 times lower than that of Gaussian
filtering. This significantly lower MSE indicates a closer resemblance of the denoised image to
the original, demonstrating a more effective denoising process.

Table 1. Evaluation metrics: PSNR, SSIM,
and MSE of simulation results

Image PSNR SSIM MSE

Noisy Input 5.37 0.045 0.033

Gaussian Denoised 6.65 0.506 0.093

N2N Denoised 15.0 0.841 0.007

3.2. Phantom results

After validating the performance of the simulation-data-trained model, we proceeded to test the
performance of our experimental-data-trained model, starting with the pencil lead phantom data.
In the pencil-lead phantom study, Fig. 6(a) shows the MAP result along the axial-lateral plane.
The image was acquired with maximum laser power at 2.7W. Figure 6(b) shows the corresponding
result along the elevation-lateral plane. It can be seen that the pencil leads are spaced 10 mm
apart, spanning depths from 50 mm to 80 mm, with the fourth lead (red color) positioned at the
80 mm depth. During the experiment, in order to visualize the deepest pencils at max power, we
increased the laser power, which resulted in a slight signal saturation in the top pencil lead (blue).
The noisy image, obtained with lower laser power at 1.83W, is shown in Figs. 6(c) and 6(d). The
noisy image is not saturated and revealed a less blurry image for the top pencil lead. This power
output is chosen since it allows the fourth pencil lead (orange) to be barely visible due to strong
EMI noise (white arrows) in the background. The unet-denoised images in Figs. 6(e) and 6(f)
demonstrate some improvement. However, the noises are not completely removed. The N2N
denoised images in Figs. 6(g) and 6(h) exhibit marked improvements in clarity. The pencil lead
at the 80 mm depth becomes notably more visible, with a considerable noise reduction.

Table 2. Network performance analysis of pencil lead at 50 and 80 mm imaging depths.

Pencil lead depth (mm) Image FWHM (mm) FWHM Diff % PSNR (dB) SSIM MSE

50 Max Power 1.25 None None None None

50 N2N Denoised 1.17 6.40% 27.3 0.81 0.043

50 Unet Denoised 1.12 10.40% 26.8 0.73 0.046

50 Noisy 1.01 19.2% 19.0 0.35 0.112

80 Max Power 2.31 None None None None

80 N2N Denoised 2.14 7.36% 24.3 0.80 0.061

80 Unet Denoised 2.65 14.72% 23.5 0.73 0.067

80 Noisy 2.77 19.91% 18.0 0.57 0.127

In addition, as shown in Table 2, the dimension of pencil leads also closely matches the
maximum power result based on FWHM quantification. The FWHM of the 50 mm pencil lead is
slightly larger at max power due to the saturation effect we mentioned earlier. At depths of 80
mm, the FWHM value of the N2N denoised image is close to that observed in the max power
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Fig. 6. Phantom imaging results. Maximum laser power result of the pencil lead in (a) axial-lateral projection 

and (b) elevation-lateral projection. (c) and (d) represent corresponding images acquired at low laser power. (e) and 
(f) represent Unet-denoised images of (c) and (d), respectively. (g) and (h) represent N2N denoised images of (c) and 

(d),  showcasing significant contrast improvement at deeper depths.

Fig. 6. Phantom imaging results. Maximum laser power result of the pencil lead in (a) axial-
lateral projection and (b) elevation-lateral projection. (c) and (d) represent corresponding
images acquired at low laser power. (e) and (f) represent Unet-denoised images of (c) and
(d), respectively. (g) and (h) represent N2N denoised images of (c) and (d), showcasing
significant contrast improvement at deeper depths.

image, as shown in Fig. 6(b). This indicates a significant denoising performance from the noisy
images, demonstrating that the denoising process effectively aligns the results more closely with
the ideal max power outcomes.

Furthermore, the PSNR, SSIM, and MSE values collectively assess the denoising performance.
The PSNR improved by approximately 39%, signifying significant noise reduction. The 85%
improvement in SSIM indicates a significant improvement in the denoised image’s structural
integrity. Meanwhile, the approximately 57% decrease in MSE indicates that the denoised image
is much closer to the original in terms of pixel values. These findings highlight the effectiveness
of our denoising approach in reducing noise, enhancing structural similarity, and minimizing
image distortion post-denoising.

3.3. In-vivo foot result

After validation of the pencil lead results, we further tested the model on in-vivo data acquired
from two human subjects. Since there is no ground truth for in-vivo data, we evaluated the
performance based on SNR over different imaging depths.

Figures 7 and 8 demonstrate the in-vivo result of two human subjects. Figures 7(a) and 8(a)
demonstrate cross-sectional views of the feet for subjects 01 and 02, respectively, while Figs. 7(b)
and 8(b) show the MAP views of their feet. These images reveal the presence of experimental
noise, particularly EMI and Gaussian-like noise, which causes noticeable discontinuity in the
vascular structures.
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Fig. 7. In vivo human foot imaging results of Subject 01. (a) Axial-lateral projection image from Subject 1. (b) 
Elevation-lateral projection image from Subject 1. (c) Gaussian filter denoised result of (a). (d) Gaussian filter 

denoised result of (b). (e) Unet denoised result of (a). (f) Unet denoised result of (b). (g) Network denoised result of 
(a). (h) N2N denoised result of (b). All images are depth encoded with color.

Fig. 7. In vivo human foot imaging results of Subject 01. (a) Axial-lateral projection image
from Subject 1. (b) Elevation-lateral projection image from Subject 1. (c) Gaussian filter
denoised result of (a). (d) Gaussian filter denoised result of (b). (e) Unet denoised result of
(a). (f) Unet denoised result of (b). (g) Network denoised result of (a). (h) N2N denoised
result of (b). All images are depth encoded with color.      Figures 7 and 8 demonstrate the in-vivo result of two human subjects. Figures 7(a) and 8(a) 

demonstrate cross-sectional views of the feet for subjects 01 and 02, respectively, while Figures 
7(b) and 8(b) show the MAP views of their feet. These images reveal the presence of 
experimental noise, particularly EMI and Gaussian-like noise, which causes noticeable 
discontinuity in the vascular structures. 

 
Fig. 8. In vivo human foot imaging results of Subject 02. (a) Axial-lateral projection image from Subject 1. (b) 
Elevation-lateral projection image from Subject 1. (c) Gaussian filter denoised result of (a). (d) Gaussian filter 

denoised result of (b). (e) Unet denoised result of (a). (f) Unet denoised result of (b). (g) Network denoised result of 
(a). (h) N2N denoised result of (b). All images are depth encoded with color.

Fig. 8. In vivo human foot imaging results of Subject 2. (a) Axial-lateral projection image
from Subject 2. (b) Elevation-lateral projection image from Subject 2. (c) Gaussian filter
denoised result of (a). (d) Gaussian filter denoised result of (b). (e) Unet denoised result of
(a). (f) Unet denoised result of (b). (g) Network denoised result of (a). (h) N2N denoised
result of (b). All images are depth encoded with color.
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and Figures 7(f) and 8(f) for the MAP views, respectively. The noise remains strong, and the 
deeper vessels cannot be revealed. Finally, the N2N network-denoised results for subjects 01 
and 02 are depicted in Figures 7(g) and 8(g) for the cross-sectional views, and Figures 7(h) and 
8(h) for the MAP views, respectively. It can be seen that most of the noise within the vessels 
and in the background has been successfully removed. In the output images, there is a clear 
enhancement in the visibility of deep vessels, along with a decrease in the discontinuity of 
vessels originally caused by noise. Key aspects of the performance are pointed out in the 
figures. 

In Figures 7(b) and 8(b), as indicated by the arrows, the vessels blend in the background 
and are hard to identify. Additionally, some deeper vessels become invisible, and the boundary 
of the vessels is obscured by noise. After applying the N2N denoising network, Figures 7(h) 
and 8(h) display markedly clearer vascular structures. The vessels are distinctly separated, each 
with clean and well-defined boundaries. Following noise removal, the deep vessels become 
visible. Additionally, issues of discontinuity within the vessel structures are effectively 
resolved.

 

Fig. 9. Average SNR over depth between the noisy raw input, Gaussian filter result, Unet,
and N2N denoised result.

The Gaussian denoising results are displayed in Figs. 7(c) and 8(c) for the cross-sectional
views and Figs. 7(d) and 8(d) for the MAP views for subjects 01 and 02, respectively. The noise
has been removed, but the vessel boundaries have become blurry. The Unet denoised results for
subjects 01 and 02 are shown in Figs. 7(e) and 8(e) for the cross-sectional views, and Figs. 7(f)
and 8(f) for the MAP views, respectively. The noise remains strong, and the deeper vessels
cannot be revealed. Finally, the N2N network-denoised results for subjects 01 and 02 are depicted
in Figs. 7(g) and 8(g) for the cross-sectional views, and Figs. 7(h) and 8(h) for the MAP views,
respectively. It can be seen that most of the noise within the vessels and in the background has
been successfully removed. In the output images, there is a clear enhancement in the visibility of
deep vessels, along with a decrease in the discontinuity of vessels originally caused by noise.
Key aspects of the performance are pointed out in the figures.

In Figs. 7(b) and 8(b), as indicated by the arrows, the vessels blend in the background and are
hard to identify. Additionally, some deeper vessels become invisible, and the boundary of the
vessels is obscured by noise. After applying the N2N denoising network, Figs. 7(h) and 8(h)
display markedly clearer vascular structures. The vessels are distinctly separated, each with
clean and well-defined boundaries. Following noise removal, the deep vessels become visible.
Additionally, issues of discontinuity within the vessel structures are effectively resolved.

We further conducted a thorough evaluation of the denoising performance by comparing the
original input and the denoised output, focusing on how the network denoising influenced the
SNR over various imaging depths. This assessment covered multiple layers, each with a thickness
of 5 mm, to ensure a comprehensive analysis across different depths. For each layer, we quantified
the SNR of a vessel, and the results are shown in Fig. 9. Subject 01 data had an average SNR
improvement of 11.39 dB across 45 mm to 60 mm. Meanwhile, subject 02 demonstrated an
average SNR enhancement of 8.96 dB. This results in an overall average SNR improvement of
10.18 dB. On the other hand, the overall SNR improvement achieved by the Gaussian filter is
1.99 dB, and the overall SNR improvement achieved by the Unet is 3.04 dB. The low performance
of Gaussian and Unet denoising is due to the struggle to enhance the SNR at deeper tissues due
to the similarity in intensity between the noise and vessel signals. The absence of a clear ground
truth for Unet training also causes its low performance. In contrast, our in-vivo model effectively
removes noise from deeper tissues, resulting in improved signal quality. We treat the SNR at 60
mm in subject 01 as an outlier because the vessel intensity was either equivalent to or even lower
than the noise. These results further highlighted the network’s performance in improving PA
vascular imaging.
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4. Discussion

In PA imaging, the SNR decreases with increasing imaging depth, posing a challenge for
deep-tissue imaging [61,62]. Traditional PA systems relied on increasing laser power to improve
the signal intensity at deeper depths [63,64]. However, this limitation is hard to overcome due to
device constraints [3,65]. This limitation becomes particularly critical in clinical imaging, where
noise sources such as EMI and Gaussian noise can significantly compromise the visibility of
vessels in human subjects [17,35].

The proposed unsupervised approach, based on the Noise2Noise network, has demonstrated
its effectiveness in removing complex structured noise in both phantom and human subjects.
In contrast to supervised learning, our method does not need labeled ground truth data. This
simplifies the training process and ensures that deep vessel structures remain undistorted during
denoising since it focuses on learning fundamental noise patterns [66,67]. Our method is also
superior to Gaussian and supervised learning Unet denoising. As can be seen in Fig. 7(d)
and Fig. 8(d), the Gaussian denoising filter could not remove the EMI noise and struggled at
deeper tissues as it often blurs vessel edges. As can be seen in Fig. 7(f) and Fig. 8(f), the
supervised-learning Unet approach cannot handle the noise when noise-free ground truth is
absent. Another significant advantage of our proposed network is its transferability to different
PA imaging systems. As an unsupervised learning technique, our method does not require any
modeling of the imaging setup and a pair of noisy inputs can be easily generated from a single
dataset [45]. In addition, as the training pair utilized noise from the experimental data itself, we
do not need to identify diverse and complex noise patterns in the PA systems [68]. Therefore, the
data generation and training procedure proposed in this study can be easily translated to other PA
imaging systems to improve the SNR and imaging depth.

A notable limitation of our study is the relatively small dataset size, encompassing 5 phantoms
in the simulation study and 20 human subjects in the clinical study. It might be necessary to
enhance the design of the training dataset by increasing its complexity. By employing methods
like flipping, cropping, or rotation during pre- and post-image processing, we can effectively
increase the size of our dataset [69]. This expansion, including more diverse noise types captured
from the system, might enhance the training process of our model [70]. In future studies, we
intend to extend our Noise2Noise model to 3D applications [71,72]. We will explore the model
performance against other semi-supervised and unsupervised models, including attention-based
models like transformers and GAN networks. This expansion from 2D plane assessments will
provide a broader understanding of how these models perform in complex 3D scenarios, enriching
our comparative analysis of denoising techniques in photoacoustic imaging [73].

5. Conclusion

In this study, we developed and validated a Noise-2-Noise-based unsupervised training strategy
for denoising photoacoustic images. The denoised image produced by our approach demonstrates
a significant improvement in SNR, vessel connectivity, and vessel visibility over the depth. Unlike
traditional supervised learning methods, the Noise2Noise approach does not require a clean image
dataset for network training, making it more flexible and capable of handling in vivo imaging
results. We have trained two models using simulation data and experimental data, respectively,
and quantitative assessments from the two models have demonstrated the effectiveness of our
method in improving the SNR across different imaging depths. Our proposed method holds great
potential for clinical translation of PA.
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