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ABSTRACT
Wound assessment is crucial for monitoring healing, but traditional 
methods require removing gauze, which can disrupt healing and 
increase infection risk. We introduce WavelyVision, an over-gauze
wound assessment system based on the mmWave sensor. It detects 
skin moisture—a key wound condition indicator—by analyzing how 
mmWave signals change with moisture levels. To improve accuracy, 
WavelyVision uses a denoised imaging algorithm to reduce motion
noise and separate skin signals from environmental interference. A 
physical model further enhances moisture estimation. Experiments
show WavelyVision achieves high accuracy, with a moisture error 
of about 0.5% and an SSIM of about 0.9. These results demonstrate
its potential for non-invasive wound monitoring.
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1 INTRODUCTION
Millions of people are affected by wounds e ach year, with the 
United States reporting over 8 million cases annually, highlighting 
a substantial clinical and economic challenge [1]. The treatment of
chronic wounds, like diabetic foot ulcers or those resulting from 
peripheral vascular disease, as well as acute wounds from injuries
or surgical interventions, poses significant healthcare hurdles [2]. 
The cost associated with wound management in the U.S. exceeds
$22 billion annually, emphasizing the critical need for efficient and 
innovative management strategies [3, 4].

Traditionally, wound evaluation methods in clinical settings in-
volve ruler-based measurements and more invasive techniques such 
as injections of saline or gel [5, 6]. These approaches usually need 
close supervision by healthcare providers and are subject to errors
lacking standardized, quantitative evaluations [7, 8]. Furthermore, 
the invasiveness of these techniques can lead to patient discomfort
and elevate the risk of secondary complications [9]. The demand 
for a non-invasive, accurate, and objective method for wound as-
sessment is therefore more pressing than ever.
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Figure 1: The WavelyVision system scans human wounds
and provides a comprehensive assessment, including wound
dimensions and moisture levels.

Initially, the approach to wound assessment employed non-
invasive contact sensors that necessitated direct contact with the
wound area. Ultrasound technology, for instance, has been used
to probe wound conditions but requires physical contact that can
introduce risks like secondary infections and increased discomfort
for patients [10]. Subsequently, the development of non-contact
methods, such as camera-based techniques, allowed for evaluating
wounds without direct touch [11]. However, these methods can-
not assess wounds covered by gauze, necessitating the exposure of
wounds, which still poses an infection risk.

Advancing beyond these previous technologies, we present a
novel technique: the mmWave-based WavelyVision method for as-
sessing wounds through gauze. Illustrated in Figure 1, this method
uses mmWave technology to detect changes in moisture content,
a crucial biomarker in wound management [12]. The capability
of mmWave signals to penetrate gauze allows for a non-intrusive
assessment, maintaining the dressing intact and significantly low-
ering infection risks, thereby improving both patient safety and
comfort.

2 HUMAN SKIN MODEL
Figure 2 offers a detailed depiction of the skin’s layers, empha-
sizing components integral to the skin’s hydration and moisture
retention [13, 14]. The varying shades of blue in the illustration
symbolize the water content within the skin layers. A deeper shade
of blue typically represents a higher concentration of water. Human
skin is composed of multiple layers, including the cuticle, epider-
mis, basement membrane, and dermis. Under normal conditions,
the cuticle and basement membrane function as protective barri-
ers, preventing internal water content from seeping to the surface.
However, wounds compromise these protective layers, leading to
water seepage and causing wounds to appear moist. The extent of

41

https://doi.org/10.1145/3722570.3726884
https://doi.org/10.1145/3722570.3726884
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3722570.3726884&domain=pdf&date_stamp=2025-05-06


HumanSys ’25, May 6–9, 2025, Irvine, CA, USA Zhang et al.

this moisture seepage depends on the severity of the wound. Light
wounds typically damage only the upper layers of skin, resulting
in minimal water loss. In contrast, severe wounds penetrate deeper
into the dermis, where moisture levels are significantly higher.
Consequently, severe wounds exhibit more pronounced moisture
seepage, which is directly linked to higher external moisture levels.
This variation in moisture serves as a vital biomarker for evaluating
wound conditions and guiding treatment strategies.

Figure 2: Human skin water distribution model.

3 WAVELYVISION SYSTEM DESIGN
The architecture of the WavelyVision system is depicted in Figure
3. Details of the steps will be discussed in the following sections.
3.1 mmWave Scanning
At the moment 𝑡 , the mmWave signal can be represented by the
function 𝑓 (𝑡). To improve the spatial resolution captured bymmWave
sensors, we employ the Synthetic Aperture Radar (SAR) technique.
This method enables the sensor to simulate a much larger antenna
aperture by moving across a two-dimensional (2D) plane, thereby
enhancing image resolution. As depicted in Figure 4, the sensor
moves over the 2D plane, collecting one chirp at each point in a
uniform grid. The increments 𝑑𝑥 and 𝑑𝑦 represent the distances
moved along the 𝑋 and 𝑌 axes, respectively. At every point, the
sensor gathers𝑇 data samples, allowing us to express the mmWave
signal as 𝑓 (𝑥,𝑦, 𝑡), where 𝑥 and 𝑦 indicate the positions 𝑥 · 𝑑𝑥 and
𝑦 ·𝑑𝑦 on the𝑋 and𝑌 axes, and 𝑡 is the index for the𝑇 samples taken
at each point. Here, 𝑥 and 𝑦 range from 1 to X and Y respectively,
which represent the total number of sampling points along each
axis.
3.2 Denoised mmWave Imaging
In this section, we introduce a method for mmWave imaging that
aims to clarify and utilize the complex signal 𝑓 (𝑥,𝑦, 𝑡), which con-
sists of reflections from various objects within the sensor’s range.
Our approach begins with applying a Fast Fourier Transform (FFT)
to the time dimension of the signal. This conversion changes the
original signal into a frequency spectrum or range bin profile
𝑅(𝑥,𝑦, 𝑘), a technique known as Range-FFT. Here, the variable
𝑘 ∈ 𝐾 serves as the range index within this profile. To focus effec-
tively on the target, we select a specific range index 𝑘 , determined
by the distance 𝑑 between the mmWave sensor and the target. This
selection process is detailed in Equation (1), which strategically
directs the sensor’s focus to primarily gather data pertinent to the
target. The focusing mechanism in the equation utilizes the 𝑆𝑙𝑜𝑝𝑒 ,
which is the frequency shift rate over time, combined with the sam-
pling rate 𝐹𝑠 , the speed of light 𝑐 , and the total number of collected

samples 𝑇 . This targeted approach helps in filtering out irrelevant
data and enhancing the quality of information extracted from the
target area.

𝑘 =
𝑆𝑙𝑜𝑝𝑒

𝐹𝑠
× 2𝑑
𝑐

×𝑇 . (1)

The traditional mmWave imaging approach, as discussed in ex-
isting literature [15], presupposes that the distance between the
mmWave sensor and the target remains constant across different
scanning positions. This assumption is valid when the target is
significantly distant from the sensor, making any positional shifts
negligible in terms of changing distance. However, this is not the
case in applications like human wound assessment, where the sen-
sor operates at close proximity to the target. As illustrated in Figure
4, the sensor’s distance to the target varies with its position; for
instance, at (𝑥1, 𝑦1) the sensor is closer to the target than at (𝑥2, 𝑦2),
resulting in 𝑑1 < 𝑑2. Such variation leads to different range indices
(𝑘1 ≠ 𝑘2) when performing Range-FFT, which could potentially
direct the sensor’s focus towards environmental reflections rather
than the actual target. To address these challenges, our denoised
mmWave imaging algorithm modifies the target selection process
by accounting for the actual distances measured from each scanning
location. This ensures that the sensor consistently concentrates on
the target across all positions. The output of this approach is a
transformed mmWave signal, 𝑅(𝑥,𝑦) |𝑘 = 𝑘𝑥𝑦, where 𝑥 ∈ [1,X]
and 𝑦 ∈ [1,Y], accurately representing information pertinent to
the target.

Next, the transformed mmWave signal 𝑅(𝑥,𝑦) |𝑘=𝑘𝑥𝑦 is used to
reconstruct the mmWave image 𝑟 (𝑥,𝑦) based on Equation (2) [16].

𝑟 (𝑥,𝑦) = |𝐹𝑇 −1
2𝐷 [𝐹𝑇2𝐷 [𝑅(𝑥,𝑦) |𝑘=𝑘𝑥𝑦 ]𝑒

− 𝑗

√︃
4𝜔2−𝜔2

𝑥−𝜔2
𝑦𝑝𝑧 ] |, (2)

while 𝐹𝑇2𝐷 and 𝐹𝑇 −1
2𝐷 are 2D Fourier Transform and Fourier In-

verse Transform. 𝑝𝑧 represents the distance from the target to the
mmWave scanning plane, 𝑥 and 𝑦 are indexed in 𝑋 and 𝑌 axes.
𝑟 (𝑥,𝑦), 𝑥 ∈ [1,X], 𝑦 ∈ [1,Y] is the mmWave channel gain of the
target at the location of (𝑥 · 𝑑𝑥,𝑦 · 𝑑𝑦, 𝑝𝑧), 𝜔𝑥 and 𝜔𝑦 are the space
frequencies of the 2D plane.

3.3 Moisture Distribution Derivation
Using our denoised mmWave imaging algorithm, the 2D mmWave
image is reconstructed to capture both the target and its surround-
ing environment. In the task of deriving moisture distribution from
mmWave signal response images, we choose to use a Physics-
Informed Neural Network (PINN) model primarily because it ef-
fectively addresses the challenge of data scarcity. The mapping
between mmWave signal responses and skin moisture is governed
by physical law, which is the interaction of electromagnetic waves
with biological tissues. Obtaining a large amount of high-quality
labeled data for training purely data-driven models is often imprac-
tical. PINNs overcome this limitation by embedding known physical
constraints directly into the model, allowing it to learn accurate
mappings even with limited labeled data. As illustrated in Figure 5,
the PINN model is composed of segmentation and derivation parts,
the details of the two parts are provided in the following sections.

3.3.1 mmWave Image Segmentation. To effectively differentiate the
target from its surrounding environment in the denoised mmWave
image, it is crucial to employ a segmentation model. We utilize

42



Through-dressing Wound Monitoring Based on The mmWave Sensor HumanSys ’25, May 6–9, 2025, Irvine, CA, USA

Figure 3: Framework of the WavelyVision system.

Figure 4: Diagram illustrating the use of a mmWave sensor
to scan a human wound for assessment.

this model to discern the skin target by capitalizing on the distinct
signal responses between the skin and other elements present in
the environment, as detailed in [17]. In practice, this process in-
volves inputting a 2D image 𝑟 (𝑥,𝑦) into the segmentation model.
The output from this model is a masked image𝑚(𝑥,𝑦), where the
dimensions match those of 𝑟 (𝑥,𝑦), and each pixel𝑚(𝑥,𝑦) assumes
a binary value—either 0 or 1. Specifically, a pixel at (𝑥,𝑦) is assigned
a value of𝑚(𝑥,𝑦) = 1 if it is identified as part of the target area;
otherwise, it is set to𝑚(𝑥,𝑦) = 0. To enhance the accuracy and re-
liability of the segmentation process on mmWave images, we have
incorporated a specialized loss function, L𝑆 , which is represented
as follows:

L𝑆 =
1

X ×Y
∑︁
𝑥,𝑦

L𝑥,𝑦

pixel, (3)

while Lpixel is a weighted combination of LCE [18] and LDice [19]
for each pixel:

Lpixel = 𝛿1LCE + 𝛿2LDice . (4)

3.3.2 Physics-informed Moisture Derivation. In the context of hu-
man wound assessment based on the mmWave sensor, the channel
gain 𝑟 is a critical factor influenced predominantly by the reflection
coefficient 𝛽 and the transmission path loss 𝛼 , as detailed in the
study byWu et al. [20]. During the operation of the sensor, mmWave
signals are emitted towards the human skin and the reflected sig-
nals are captured. Since the transmission medium is air, which has
a relatively minor effect on the path loss—owing to its low relative
permittivity—the transmission path loss 𝛼 is approximately 1, thus
negligible in practical terms. The reflection coefficient 𝛽 , on the
other hand, quantifies the proportion of the mmWave signal that is
reflected at the boundary between two different media. According
to the Fresnel Equation, 𝛽 is defined as 𝛽 =

𝑛2−𝑛1
𝑛2+𝑛1

, where 𝑛1 and 𝑛2
are the refractive indices of the first and second media, respectively.

In the specific application of wound assessment, the mmWave sig-
nal transitions from the air (first medium, with refractive index
𝑛1 ≈ 1) to human skin (second medium). The relationship between
the mmWave signal channel gain 𝑟 and the reflection coefficient 𝛽
is described as follows:

𝑟 = 𝑐 · 𝛼 · 𝛽 = 𝑐 · 𝑛𝑠𝑘𝑖𝑛 − 1
𝑛𝑠𝑘𝑖𝑛 + 1 , (5)

while 𝑐 is a constant correlation coefficient and 𝑛𝑠𝑘𝑖𝑛 is the re-
fractive index of the human skin. According to Equation (5), the
mmWave signal channel gain 𝑟 is only related to the refractive
index of the human skin 𝑛𝑠𝑘𝑖𝑛 , which is the parameter that is the
root of the relative dielectric constant 𝜀 [21], i.e., 𝑛𝑠𝑘𝑖𝑛 =

√
𝜀𝑠𝑘𝑖𝑛 .

In skin moisture sensing, we can regard the human skin as a mix-
ture, which is composed ofwater and another component. Looyenga
formula is a famous formula for the dielectric property of heteroge-
neous mixtures [22], it models the correlation between the moisture
level 𝑉 and the relative dielectric constant of the human epidermal
𝜀, which is described in Equation (6) as follows:

𝑉 =
(𝜀

1
3 − 𝜀

1
3
𝑜𝑡ℎ𝑒𝑟

)

(𝜀
1
3
𝑤𝑎𝑡𝑒𝑟 − 𝜀

1
3
𝑜𝑡ℎ𝑒𝑟

)
, (6)

The moisture level 𝑉 is defined as the mass ratio of water to
the target. The relative dielectric constants of water (𝜀𝑤𝑎𝑡𝑒𝑟 ) and
other components (𝜀𝑜𝑡ℎ𝑒𝑟 ) within the target are intrinsic properties
of these materials and are thus constants. Consequently, the mois-
ture level 𝑉 is determined by the relative dielectric constant of the
human skin (𝜀). According to Equations (2&5&6), there exists a cor-
relation between the mmWave image values and the moisture level,
establishing a direct link between these two important parameters.

𝑉 =

((
2𝑐
𝑐−𝑟 − 1

) 2
3 − 𝜀

1
3
other

)
(
𝜀
1
3
water − 𝜀

1
3
other

) = 𝑝

(
2𝑐
𝑐 − 𝑟 − 1

) 2
3
+ 𝑞 = 𝑝𝑟 ′ + 𝑞,

𝑝 =
1(

𝜀
1
3
water − 𝜀

1
3
other

) , 𝑞 = −
𝜀
1
3
other(

𝜀
1
3
water − 𝜀

1
3
other

) , 𝑟 ′ = (
2𝑐
𝑐 − 𝑟 − 1

) 2
3
.

(7)
As shown in Figure 5, after obtaining the segmented mmWave

image, a derivation module is employed to extract the 𝑝 and 𝑞
parameters, which are subsequently used to calculate the moisture
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Figure 5: The framework of the Physics-Informed Neural Network (PINN) for evaluating moisture distribution.

distribution from the segmented mmWave image. Specifically, the
loss function L𝑀 is designed to guide the model in evaluating the
moisture based on the physical relationship between the mmWave
signal response and the moisture level:

L𝑀 =
1

X ×Y
∑︁
𝑥,𝑦

(𝑉 𝑥,𝑦

𝐺
− 𝑝 × 𝑟 ′𝑥,𝑦 − 𝑞). (8)

3.3.3 Total Loss Function of PINN model. The total loss function of
our proposed PINN model is the combined loss function of the seg-
mentation module and the derivation module, allowing the model
to focus on the skin target area and accurately derive the moisture
distribution. The combined loss function L is expressed as follows:

L = 𝛾1L𝑆 + 𝛾2L𝑀 . (9)

4 IMPLEMENTATION
4.1 System Integration
4.1.1 mmWave Scanning Kit. In the configuration depicted in Fig-
ure 6, the mmWave data acquisition is conducted using the TI
AWR1642BOOST sensor. This sensor is mounted on a 2D motion
platform comprised of two linear motion guides (THOMSON LIN-
EAR MOTION SYSTEM) positioned at right angles to each other.
The platform facilitates smooth, consistent movement of the sen-
sor across a 2D plane at a predetermined velocity. As the sensor
traverses this plane, it continually scans the target area, generating
mmWave images. These images are produced using the special-
ized imaging algorithm described in Section 3.2. To synchronize
the data collection accurately, an ELEGOO UNO R3 controller is
employed. This controller emits stable square wave signals that
serve dual functions: triggering the mmWave sensor to commence
data sampling and commanding the 2D motion platform to initiate
sensor movement. This dual-triggering mechanism ensures that
each frame captured by the mmWave sensor is precisely aligned
with its specific location on the 2D plane, based on the sensor’s
movement speed and the frame sampling rate.
4.1.2 System Parameter Setup. The 2D motion platform system-
atically transports the mmWave sensor across a grid at a constant
rate of 50 mm/s on both the X and Y axes. This system utilizes
a solitary transmitter (Tx) and receiver (Rx) configuration within
the mmWave sensor for gathering data. The configuration is set to
complete an FMCW frame in 0.025 seconds, which includes a single
chirp. Given the chirp’s duty cycle is approximately 0.3% of the total
frame duration, this brief chirp length ensures the sensor effectively
remains static during data capture at each scan point. The grid for
2D scanning comprises 51 discrete positions along both the X and

Figure 6: WavelyVision system prototype.

Y dimensions, labeled as X = 51 and Y = 51. With a uniform step-
ping interval of 2 mm between each point, the entire scanning grid
covers dimensions of 𝐷𝑥 = 100 mm and 𝐷𝑦 = 100 mm. Under these
operational parameters, the full scanning process spans 102 seconds.
The predefined distance between the sensor’s scanning plane and
the target is maintained at 30 mm. Throughout each chirp, the fre-
quency of the mmWave sensor sweeps from 77 GHz to 81 GHz, thus
utilizing a bandwidth of 4 GHz. The frequency slope, denoted as 𝐵,
is established at 46.493 MHz/𝜇s. Additionally, the sensor conducts
uniform sampling 512 times during each chirp, capturing detailed
frequency response data essential for high-resolution imaging.
4.1.3 Training Parameter. The Physics-Informed Neural Network
(PINN) model is implemented using PyTorch on an NVIDIA L40S
GPU. The Adam optimizer is employed, with the learning rate set
to 1e-3 and a multiplicative decay factor of 0.9 applied every 5
epochs. The loss function weights 𝛿1, 𝛿2, 𝛾1, 𝛾2 are set as 1, 1, 0.5, 1,
respectively. The training process runs for 50 epochs with a batch
size of 16.

4.2 Invivo Test Benchmark
Due to the limited access to real human wound samples, we simu-
late the abnormal moisture characteristics of wounds by applying
ultrasound gel to the skin. This simulation approach builds upon
established methodologies in wound research, where hydrogel-
based materials have been widely adopted to mimic wound exudate
properties [23, 24]. Compared to direct water application, the non-
Newtonian fluid properties of ultrasound gel provide more stable
hydration simulation with reduced evaporation effects, enabling
reliable system evaluation during the scanning procedure. While ac-
knowledging the inherent complexity of real wounds (e.g., healing
stage variations, biochemical diversity), this standardized simula-
tion protocol allows for controlled parametric studies of moisture
detection sensitivity prior to clinical validation.
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4.3 Groundtruth Moisture Distribution
To get the groundtruth of moisture distribution for the system train-
ing and testing, we harness the capabilities of Short-wave Infrared
(SWIR) light. SWIR light, spanning the 0.9 - 1.7 𝜇m wavelength
range, has a limited penetration capacity but is notably absorbed
by water molecules. Consequently, the wound with a higher mois-
ture level will absorb more SWIR light, resulting in a decrease in
reflected light intensity and, thus, a lower pixel value on the SWIR
camera image. As shown in Figure 7, we establish a SWIR-based
data collection platform and calibrate the SWIR camera to measure
moisture distribution.

Figure 7: SWIR-based moisture distribution measurement
platform.

4.4 Performance Metric
Mean moisture error (MME): The mean absolute error is used
to quantify the moisture evaluation accuracy. For the output and
groundtruthmoisture distribution from theWavelyVision and SWIR
systems, the predicted value 𝑣 and groundtruth value 𝑣 are obtained
by calculating the mean value of the moisture distribution. As de-
scribed in Equation (10), MME is computed by taking the absolute
differences between the two values, summing all 𝑛 absolute dif-
ferences, and then dividing by the number of predictions made.
MME is a non-negative value, which indicates the accuracy of our
WavelyVision system in terms of moisture value estimation.

𝑀𝐴𝐸 =
1
𝑛

𝑛∑︁
𝑖=1

|𝑣𝑖 − 𝑣𝑖 |. (10)

Structural Similarity Index (SSIM): The Structural Similarity
Index is a metric used to assess the similarity between two images.
The SSIM formula is typically expressed as:

𝑆𝑆𝐼𝑀 (𝑥,𝑦) =
(2𝜇𝑥 𝜇𝑦 +𝐶1) (2𝜎𝑥𝑦 +𝐶2)

(𝜇2𝑥 + 𝜇2𝑦 +𝐶1) (𝜎2𝑥 + 𝜎2𝑦 +𝐶2)
, (11)

where 𝜇𝑥 and 𝜇𝑦 are mean values of image 𝑥 and image 𝑦, 𝜎2𝑥 and
𝜎2𝑦 are the variances, 𝜎𝑥𝑦 is the Covariance between image 𝑥 and
image𝑦,𝐶1 and𝐶2 are small constants to stabilize the division when
denominators are close to zero, typically set as 6.5025 and 58.5225,

respectively. SSIM values range from -1 to 1, where 1 indicates
perfect similarity, 0means no similarity, and negative values suggest
inverse correlation.

5 EVALUATION
The wound condition is closely linked to the moisture level due to
the water seepage effect. Therefore, wound assessment essentially
involves evaluating the moisture distribution. In this section, we
recruit 10 volunteers aged from 18 to 28, including 7 males and
3 females. Simulated wounds are created by applying ultrasound
gel on various skin areas. For each participant, 50 data samples
are collected. The training dataset is composed of data from 5
male and 2 female participants, while the remaining 2 male and 1
female participants are included in the testing dataset to evaluate
the system’s performance.

5.1 System Factor Analysis
As outlined in Section 3.2, the denoised mmWave imaging algo-
rithm reduces motion noise during mmWave sensor scanning by
synchronizing sensor-to-subject distance prior to imaging. To evalu-
ate its effectiveness, the dataset is trained and tested on two system
pipelines:

1). Comparison system: Conventional mmWave imaging al-
gorithm [15] combined with a Physics-informed Neural Network
(PINN) model.

2). WavelyVision system (Ours): Denoised mmWave imaging
algorithm combined with the same PINN model.

System performance is assessed on the testing dataset using the
SSIM metric described in Section 4.4. Specifically, we compare the
similarity between the system’s output moisture distribution and
the groundtruth moisture distribution obtained from the SWIR cam-
era. As shown in Table 1, our WavelyVision system, utilizing the
denoised mmWave imaging algorithm, outperforms the compari-
son system in moisture distribution estimation. This improvement
highlights the enhanced image quality provided by the denoised
mmWave imaging algorithm.

Table 1: Themean structural similarity indexmeasure (SSIM)
results for moisture distribution estimation of different sys-
tems.

System Type SSIM (Range from -1 to 1)
Comparison System 0.75
WavelyVision System 0.88

5.2 Over-gauze Wound Assessment
To examine the performance of the WavelyVision system in over-
gauze wound assessment on real human skin, for the subjects in
the testing dataset, we cover the simulated wounds with gauze
of varying thicknesses, collect additional data, and evaluate the
system’s over-gauze performance. As shown in Table 2, the system’s
moisture distribution estimation remain largely unaffected by the
presence of gauze, demonstrating the system’s capability to perform
reliable wound assessment under over-gauze conditions.
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Table 2: Themeanmoisture error (MME) andmean structural
similarity index measure (SSIM) results for moisture distri-
bution estimation on real skin under different over-gauze
conditions.

Gauze Thickness MME SSIM (Range from -1 to 1)
Without Gauze 0.54% 0.88
1-layer Gauze 0.5% 0.86
2-layer Gauze 0.57% 0.87

6 DISCUSSION
6.1 System Time Delay
The end-to-end latency of theWavelyVision system, which includes
data collection, signal processing, and model prediction, currently
reaches approximately 100 seconds per wound assessment. This
duration is lengthy and underscores the need for time optimization
to enhance the system’s practicality. For example, during surgi-
cal wound monitoring, real-time feedback is crucial for guiding
intraoperative adjustments. Similarly, in high-throughput wound
care clinics, the system’s efficiency has a direct impact on patient
throughput and operational costs. Future improvements should con-
centrate on optimizing both the hardware (e.g., increased scanning
speed) and software (e.g., more efficient neural networks), aiming to
facilitate real-time wound assessment for these demanding contexts
while preserving diagnostic accuracy.

6.2 Clinical Trial
The transition from controlled laboratory validation to clinical trials
presents critical challenges for the WavelyVision system, partic-
ularly in addressing the inherent variability of real-world wound
conditions—such as differences in tissue composition and healing
stages—which may impact measurement consistency compared
to idealized phantom models. To ensure clinical relevance, future
trials must incorporate stratified patient cohorts (accounting for
factors like skin pigmentation, wound age, and comorbidities) while
maintaining standardized imaging protocols to isolate system per-
formance from biological variability.

6.3 Portable Device Design
The breakthrough miniaturization of mmWave technology enables
the development of WavelyVision as a potential portable wound
monitoring device for home use. The small and light weight allow
patients to conveniently perform daily wound assessments inde-
pendently, without requiring professional assistance or complex
setup procedures. However, to fully realize the potential of this
portable solution for home healthcare applications, future devel-
opment must focus on creating an advanced imaging algorithm
capable of compensating for natural hand movements during op-
eration. Such motion-robust algorithm would need to maintain
diagnostic-quality scan accuracy despite the inevitable tremors
and positional variations that occur during handheld use by non-
professional users.
7 CONCLUSION
We introduce WavelyVision, a mmWave-based system for over-
gauze wound assessment. It detects wound moisture using RF sig-
nals and reduces motion noise with a denoised imaging algorithm.
A moisture model improves accuracy by linking mmWave signals

to water content. Testing confirms its reliability, allowing wound
checks without removing gauze, lowering infection risk. WavelyVi-
sion also shows potential for broader skin health monitoring.
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