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A B S T R A C T

Accurate assessment of tissue perfusion is essential for managing chronic foot ulcers in patients with diabetes and 
peripheral arterial disease. While photoacoustic (PA) imaging enables high-resolution visualization of vascular 
structures, current perfusion evaluation methods are limited. We propose a fully automated radiomics-based 
framework for predicting perfusion conditions using single-wavelength clinical PA foot imaging. Radiomics 
features were extracted from both raw radiofrequency (RF) signals and reconstructed maximum amplitude 
projection (MAP) images. After reproducibility testing and statistical filtering, features were ranked using a 
combined minimum redundancy maximum relevance (mRMR) and ReliefF approach. A k-nearest neighbors 
ensemble model trained on eight selected features achieved an area under the curve (AUC) of 0.90 (training) and 
0.94 (test). The selected features corresponded with physiological indicators such as vessel density, tissue 
structure, and vascular discontinuity. This study demonstrates a reliable and interpretable method for perfusion 
assessment in PA imaging with strong clinical potential.

1. Introduction

Chronic leg wounds are a growing concern among the aging popu
lation, affecting over 6.5 million Americans and resulting in annual 
treatment costs of $25 billion in the United States [1–3]. These ulcers 
often originate from vascular diseases at both macrovascular and 
microvascular levels, leading to ischemia and impaired healing [4]. 
Revascularization surgery is an effective intervention that restores 
arterial blood flow to ulcers [5]. However, in patients with diabetes or 
peripheral arterial disease, perfusion may be adequate in one vessel but 
insufficient in areas of tissue loss [5,6], highlighting the need for accu
rate perfusion assessment to optimize patient care.

Current clinical tests for assessing blood perfusion remain inade
quate [2]. Generalized approaches such as the ankle–brachial index 
(ABI) and toe–brachial index (TBI) cannot resolve perfusion within 
specific tissue regions and are limited by vessel calcification, loss of 
digits, and operator variability [7]. Photoplethysmography (PPG) is 
affected by skin conditions [8], and transcutaneous oxygen pressure 
(TcPO2) requires prolonged acquisition times and is influenced by 

edema or cellulitis [9]. Doppler ultrasound primarily evaluates proximal 
vessels, with low sensitivity to microvasculature [7]. X-ray computed 
tomography (CT) angiography has ionizing radiation and contrast agent 
injection. Magnetic resonance angiography (MRA) offers 
high-resolution vascular imaging but is limited by long scan times, high 
cost, and often the need for gadolinium-based contrast [2]. 
Near-infrared fluorescence angiography with indocyanine green (ICG) 
can visualize tissue perfusion, but clinical use is constrained by the need 
for contrast injection [9].

Photoacoustic (PA) tomography (PAT) is an emerging modality 
based on photoacoustic effect, which enables mapping of the optical 
absorption through acoustic detection [10–13]. By overcoming the 
diffusion limit inherent in traditional optical imaging, PAT can generate 
high-resolution images in deep tissues, as acoustic waves experience 
significantly less attenuation than light. Leveraging these advance
ments, PAT shows great potential for both preclinical research and 
clinical practice across diverse fields [14], including but not limited to 
breast cancer diagnosis [15–17], palm biometric extraction [18], thy
roid cancer detection [19], lymphatic disease monitoring [20], and 
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melanoma diagnosis [21].
Recent studies have demonstrated the potential of PAT systems to 

predict perfusion conditions using PAT images. Choi et al. reported that 
total hemoglobin concentration, hemoglobin oxygen saturation, and 
vessel density could accurately describe the microvascular change due 
to venous occlusion [22], but these findings were based on healthy 
volunteers experiments only. Yang et al. evaluated vascular function 
through post-occlusive reactive hyperemia [23], but the occlusion pro
cess could be painful and potentially harmful for patients with periph
eral artery disease. Wang et al. used the vessel-to-background ratio as an 
indicator of perfusion [24], while Huang et al. proposed an integrated 
index combining vessel density, occupancy, and sharpness for perfusion 
estimation [25]. Huynh et al. found vessel tortuosity to be strongly 
associated with peripheral vessel disease [26]. However, the accuracy of 
these evaluation metrics often depends on reliable vessel segmentation. 
In addition, further validation might be necessary due to the limited 
sample sizes in these studies. Mantri et al. proposed that the rate of PA 
intensity change could indicate the angiogenesis rate [27]. However, the 
intensity-only analysis is subject to laser-dependent fluctuations and 
excitation light conditions.

Radiomics is a rapidly evolving field in medical imaging, leveraging 
data-characterization algorithms to extract a wide range of quantitative 
features, which are often beyond human visual detection [28]. It has 
been increasingly applied to medical imaging modalities such as mag
netic resonance imaging, ultrasound, and computed tomography, 
uncovering critical insights for disease classification and prognosis [28, 
29]. Recently, radiomics has also been adapted for both in-vivo and 
ex-vivo photoacoustic imaging, highlighting its potential to enhance 
diagnostic capabilities [30–33]. This approach offers a transformative 
opportunity to predict perfusion conditions more effectively by 
providing a detailed and comprehensive analysis of PA imaging data.

In this study, we present a fully automated radiomics-based 
approach for predicting perfusion conditions using single-wavelength 
clinical PA foot imaging. The method involves extracting a compre
hensive set of radiomics features from both raw radiofrequency (RF) 
signals and reconstructed maximum amplitude projection (MAP) images 
acquired by a portable single-wavelength PA system. Key features are 
identified through a systematic selection process that includes repro
ducibility testing, statistical filtering, and feature ranking. These 
selected features are then used to train machine learning models for 
classifying perfusion status. Notably, the extracted features are inter
pretable and exhibit clear associations with physiological indicators of 
perfusion, such as vessel density, tissue architecture, and vascular 
discontinuity. This approach not only improves prediction accuracy but 

also deepens the understanding of the relationship between PA signals 
and perfusion conditions, providing valuable insights to support clinical 
decision-making.

2. Methods

2.1. Workflow

The proposed workflow consists of four main stages: preprocessing, 
feature extraction, feature selection, and model evaluation, as shown in 
Fig. 1. During preprocessing, regions of interest (ROIs) are automatically 
generated from both the PA RF data and the reconstructed MAP images 
using a customized automatic segmentation algorithm. In the feature 
extraction stage, first-order statistical and texture features are computed 
from both data types using the PyRadiomics library [34], with various 
image filters applied to enhance feature diversity and representation. 
Feature selection is carried out through a series of steps, including a 
reproducibility test, the Mann–Whitney U test with Bonferroni correc
tion, correlation analysis, and feature importance ranking. Subse
quently, machine learning models including k-nearest neighbors (KNN) 
ensemble, support vector machine (SVM), and random forest are trained 
using the selected features. Model performance is evaluated using the 
area under the curve (AUC) metric to identify the optimized model. In 
addition, we examine the physiological relevance of selected features to 
understand their associations with perfusion-related characteristics.

2.2. Data acquisition

The PAT images in this study were acquired through a portable im
aging system proposed in [25]. The experimental setup of the imaging 
system was presented in Fig. 2. As demonstrated in Fig. 2(a), the scan
ning head of the system consists of a customized linear-array transducer 
(Imasonics SAS, France) with 128 elements and 2.25 MHz central fre
quency, a fiber bundle, a high-performance cold mirror (Edmund Optics 
Inc), and a 3D-printed base. The transducer has an 86-mm total length to 
cover the foot. The transducer and fiber bundle head are placed verti
cally to each other, with the cold mirror attached at a 45-degree to fiber 
bundle. This design achieves co-planar light illumination and acoustic 
detection, optimizing the imaging depth of the system. To ensure that 
the scanner head aligns with the surface of the foot dorsum, we used a 
manual rotation stage mounted at the top of the scanning head. The 
stage helped to reduce variation in the lateral distances to foot surface. 
An adjustable footrest plate is fixed under the water tank to provide 
proper support for the subject’s foot to improve the imaging stability. A 

Fig. 1. Workflow of the study.
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10 Hz portable laser (Big Sky Laser) is employed to provide photo
acoustic excitation, and a portable data acquisition (DAQ) unit (Photo
sound Technologies Inc.) is used to digitize PA signals with a 40 MHz 

sampling rate. A photo of the imaging system is shown in Fig. 2(b). Most 
equipment of the system is installed in a cart, except for the portable 
laser. Exemplary PA vascular images of feet can be found in 

Fig. 2. Experimental setup of the clinical photoacoustic imaging system. (a). A schematic drawing of the imaging system. The light illumination is marked in green, 
while the acoustic propagation is labeled in yellow. (b) A photograph of the imaging system. Most equipment of the system is installed on a cart, except for the 
portable laser.

Fig. 3. A flowchart illustrating the process of images selection.
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Supplementary Material Fig. S1.
Approval of all ethical and experimental procedures and protocols 

was granted by the Institutional Review Boards of the University at 
Buffalo under Protocol No. STUDY00001165 in Oct 2017. All human 
subjects provided informed consent after fully understanding the im
plications of their participation.

From April 2023 to August 2024, a total of 305 PA images were 
acquired from 113 feet of 73 patients recruited by clinical collaborators. 
As illustrated in Fig. 3, inclusion and exclusion criteria were systemat
ically applied to ensure reliable data quality. First, 50 images were 
excluded because the corresponding patients did not have recent clinical 
diagnostic records. During clinical data collection, a small number of 
acquisitions resulted in invalid or unusable PA images due to chal
lenging patient conditions or environmental factors. For instance, some 
samples showed extremely weak or absent PA signals or lacked visible 
vascular structures within the imaging region. We have used the quality 
score in Supplementary material Fig. S2 to identify these unclear PA 
images. Together with 22 images affected by motion artifacts, a total of 
52 images were excluded at this stage. Subsequently, 25 additional 
images were removed due to an improper distance between the foot 
surface and the transducer, which can distort signal accuracy. After 
confirming the clinical report and image data quality, 178 images from 
79 feet (52 patients) were included for feature extraction and analysis. 
The final dataset was divided based on feet into a training set (143 
images from 63 feet) and a test set (35 images from 16 feet).

We reviewed medical records and physician notes, considered 
diagnostic results including Ankle-Brachial Index (ABI) and Toe- 
Brachial Index (TBI), and visually inspected the foot for the presence 
of wounds or ulcers. A foot was labeled as unhealthy if clinical diagnosis 
or vascular tests indicated evidence of ongoing peripheral arterial dis
ease or if visible wounds were present. Conversely, a subject was labeled 
as healthy if the clinical evaluation, ABI/TBI results, and visual in
spection showed no signs of disease or foot wounds.

The clinical characteristics of enrolled patients were presented in 
Table 1. Among 79 enrolled feet from 52 patients, 25 feet were classified 
as healthy and 54 feet as unhealthy. The median age across all feet was 
65 years (interquartile range [58, 72.25]), with no significant difference 
between healthy and unhealthy groups (p = 0.2492). Laterality was 
balanced, with 38 (48 %) left feet and 41 (52 %) right feet (p = 0.6370). 
The gender distribution was 36 male (46 %) and 42 female (54 %) and 
likewise showed no significant group difference (p = 0.4349). In terms 
of race, 66 feet (84 %) were White, 12 (15 %) African American, and 1 
(1 %) other; again, no difference between groups (p = 0.2269). Ulcer 
presence was seen in 22 feet (28 %) and was significantly more common 
in the unhealthy group (41 % vs. 0 %, p = 0.0002). P-value in Table 1 is 
calculated by U test for continuous variables and Chi-Squared test for 
categorical variables.

2.3. Data preprocessing

2.3.1. ROI segmentation for RF data
To enhance the reproducibility and repeatability of the study, we 

developed an automatic algorithm to label the ROIs in RF data. 
Considering the existence of the electromagnetic inference (EMI) noise, 
the wavelet filter was first applied to the RF data to improve the 
contrast. We then utilized the Hilbert transformation to compute the 
envelope of the bipolar-shaped RF signals. To simplify the analysis, each 
frame was compressed into a 1D array by summing the RF data along the 
lateral direction, followed by smoothing using a moving mean filter 
along axial direction to reduce noise.

Given that foot tissue exhibits significantly stronger PA responses 
than water, potential peaks were identified in the 1D array based on a 
minimum prominence of 25 % of the maximum value. To ensure con
sistency, peaks were refined by considering their locations across adja
cent frames. The starting point of the ROI was defined as the first point 
exceeding 20 % of the peak height on the peak’s rising edge. The axial 
depth of the ROI was fixed at 1000 pixels (approximately 38.5 mm) to 
preserve maximum information.

In this study, the raw RF data were laterally summed into a one- 
dimensional axial profile to enable efficient and robust detection of 
tissue boundaries. This approach focuses on the axial signal distribution, 
while lateral variation was minimized by aligning the scanning head 
with the foot dorsum using a rotation stage.

Notably, while extensive processing was conducted to extract ROIs, 
the raw bipolar RF data was saved for feature extraction to maintain 
data integrity.

2.3.2. MAP image reconstruction and ROI segmentation
The acquired RF signals were initially filtered by a 2–5 MHz band

pass filter and then reconstructed with the delay-and-sum method [35]. 
In our current workflow, the reconstruction process already utilizes in
formation from the ROIs identified in the RF data. Specifically, the axial 
start point for reconstruction is set at the upper boundary of the ROIs 
identified in the RF data and the end point was calculated automatically 
based on the end depth and view angle. This process enables automatic 
and consistent reconstruction without manual intervention, thereby 
improving the reproducibility and repeatability of the study. To mini
mize variations caused by differing skin tones and the presence of hair, 
the reconstructed images underwent skin layer removal using SL-Net 
[36]. The investigation on the performance of skin removal procedure 
was presented in Supplementary material (Fig. S3). The reconstructed 
data was then normalized by scaling the intensity values to a range 
between 0 and 1, compensating for the optical attenuation caused by 
skin layers with different skin tones.

Given the system’s large scanning window (86 mm laterally and 
100 mm in the elevational direction), the foot occupies only a portion of 
the image in most cases. To focus solely on the features of foot tissues, 
we developed an automated method to extract the ROI of the foot for 
further processing. The skin-removed reconstructed image was fed into a 
3D FD-UNet to suppress noise and enhance vasculature [37]. Following 
enhancement, vessels in the MAP image were segmented by applying a 
threshold set to the 95th percentile of the image’s histogram. Although 
this high threshold excluded some smaller vessels, the primary vascu
lature was reserved. A convex hull was subsequently generated from the 
binarized vessels to define the ROI for the MAP image. A more detailed 
workflow of ROI selection was presented in the Workflow for ROIs Se
lection and Fig. S4 in the Supplementary Material.

2.4. Radiomic feature extraction

To extract radiomic features, we utilized the Pyradiomics library, an 
open-source and widely adopted platform that provides standardized 
tools for reproducible feature extraction. Prior to the feature extraction, 
several image filters were applied to ensure a comprehensive analysis of 

Table 1 
Clinical characteristics of the recruited patients.

Variable Total 
(n = 79 
feet)

Healthy feet 
(n = 25)

Poor perfusion 
feet 
(n = 54)

P- 
value

Age (years), median 
[Q1, Q3]

65 [58, 
72.25]

69.5 [58, 
80.5]

65 [57.75, 72] 0.2492

Laterality, n (%) ​ ​ ​ 0.6370
Left foot 38 (48 %) 13 (52 %) 25 (46 %) ​
Right foot 41 (52 %) 12 (48 %) 29 (54 %) ​

Gender, n (%) ​ ​ ​ 0.4349
Male 36 (46 %) 13 (52 %) 23 (43 %) ​
Female 42 (54 %) 12 (48 %) 31 (57 %) ​

Race, n (%) ​ ​ ​ 0.2269
White 66 (84 %) 19 (76 %) 47 (87 %) ​
African American 12 (15 %) 5 (20 %) 7 (13 %) ​
Other 1 (1 %) 1 (4 %) 0 (0 %) ​

Ulcer Present, n (%) 22 (28 %) 0 (0 %) 22 (41 %) 0.0002
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both RF data and reconstructed MAP images. The application of a 
diverse range of filters enriched the variety of extracted features by 
highlighting distinct image properties such as intensity, texture, edges, 
and multiscale patterns. This approach enhanced the sensitivity and 
robustness of radiomics analysis, enabling improved characterization of 
complex image data while reducing biases associated with raw intensity 
values.

To discretize gray levels in the RF data and MAP images, we set a bin 
width of 25 for MAP images and 1000 for RF data. Additionally, to 
optimize computational efficiency, the RF data was down sampled by a 
factor of four, reducing the sampling frequency from 40 MHz to 10 MHz. 
According to the Nyquist-Shannon sampling theorem, a 10 MHz sam
pling frequency is sufficient to retain meaningful information for a 
transducer with a central frequency of 2.25 MHz.

For both original and filtered images, features from various feature 
classes were extracted for each image type. Specifically, 18 first-order 
features (histogram statistics) were computed to describe the intensity 
distribution of voxels within the ROI [38,39]. Furthermore, 73 texture 
features from calculated from several matrices, including 22 features 
from Gray-level Cooccurrence Matrix (GLCM) [40], 16 features 
Gray-level Run-length Matrix (GLRLM) [41], 16 features from 
Gray-level Size Zone Matrix (GLSZM) [42], 5 features from Neighboring 
Gray Tone Difference Matrix (NGTDM) [43] and 14 features from 
Gray-level Dependence Matrix (GLDM) [44]. It is notable that features 
extracted from MAP images and raw RF data are different. Specifically, 
MAP images were treated as 2D data while RF data were treated as 3D 
volumes, and distinct image filters were applied during preprocessing to 
enhance feature diversity in each domain. These features provide a 
comprehensive representation of intensity and texture patterns within 
the data. The image filters used in this study are summarized in Sup
plementary Material Table S1.

2.5. Dataset splitting

The dataset was divided into training and test sets using a stratified 
sampling approach to preserve the proportion of healthy and unhealthy 
cases in both subsets. To avoid data leakage, the split was performed 
based on individual feet, ensuring that samples originating from the 
same foot were assigned exclusively to either the training set or the test 
set. The division followed an 80:20 ratio, with 80 % of the data allocated 
to the training set and the remaining 20 % to the test set. The samples in 
the test sets were used for model evaluation only and were not involved 
in feature selection or machine learning model training.

2.6. Feature selection

2.6.1. Reproducibility examination
Considering that some radiomics features are sensitive to image 

acquisition and processing settings [45], we examined features extrac
ted from different samples but acquired from the same foot on the same 
date to verify the reproducibility. The coefficient of variation (CV) was 
applied to estimate the variance between features from samples ob
tained from the same foot on the same date. The calculated CV was 
averaged among subjects, and the final threshold for the average CV was 
set as 0.1. Features with CV larger than this value were considered as 
poor reproducible and were not enrolled in the following analysis. This 
procedure aims to eliminate features sensitive to small variations.

2.6.2. Initial feature filtering with U test
After removing poorly reproducible features, we would like to 

discover features which contain important information about blood 
perfusion. Therefore, we implemented the Mann-Whitney-Wilcoxon test 
(U test) to identify the potential features related to the perfusion con
dition [46]. Since there were a large number of features involved in the 
U test, Bonferroni correction was adopted in this study to adjust p-values 
to account for multiple comparisons and control the risk of false 

positives [47]. The significance level was set at 0.05, features with 
adjusted p-values lower than the threshold were considered as signifi
cantly related to the perfusion condition and initially selected for further 
processing.

2.6.3. Correlation analysis
Considering the large number of extracted features, there is a high 

possibility that some features correlate with each other. The presence of 
highly correlated features can lead to redundancy and multicollinearity, 
especially for studies with a relatively small dataset. We conducted a 
correlation analysis for features selected by the U test by computing the 
pair-wise Pearson’s correlation coefficient (PCC) [48]. In this study, we 
set the correlation coefficient threshold at 0.8 to consider the feature 
pairs highly related. For these highly related feature pairs, we selected 
the most important feature determined by their p-value. Removing these 
correlated features contributes to improved model stability, interpret
ability and performance.

2.6.4. Feature ranking
To identify the most relevant features for tissue perfusion, we 

employed a comprehensive feature selection process combining mini
mum Redundancy Maximum Relevance (mRMR) [49], and ReliefF al
gorithms [50]. These two methods assess feature importance from 
relevance with minimal redundancy and neighborhood-based relevance, 
respectively. The feature importance was evaluated by these two 
methods independently. An integrated ranking was then computed for 
each feature by summing its ranks estimated by the two methods. Fea
tures were subsequently ordered by their integrated scores with lower 
scores indicating higher overall importance.

A backward search was initialized to identify the optimized combi
nations of features for perfusion prediction. Starting from the set con
taining all features involved, each searching step will remove the least 
important feature based on their ranking, until only the most significant 
feature is used for building the machine learning model. This method 
evaluated features in multiple aspects, making the feature ranking 
robust and computationally efficiency for this task.

2.6.5. Machine learning model construction
Based on filtered features, we implemented three machine learning 

models: k-nearest neighbors (KNN) ensemble [51], support vector ma
chine (SVM) [52], and random forest [53]. Model training was con
ducted using a five-fold cross-validation strategy to prevent overfitting.

The primary metric used for model evaluation was the area under the 
receiver operating characteristic curve. AUC was selected for its ability 
to assess the model’s discriminatory power across all classification 
thresholds, providing a comprehensive measure of performance. The 
comparative analysis of the AUC values obtained from the KNN 
ensemble, SVM, and random forest models enabled the identification of 
the most effective approach for radiomics analysis.

In the aforementioned workflow, the skin removal (SL-Net), vessel 
enhancement (3D FDUNet), and radiomics feature extraction were 
conducted in Python (Python Software Foundation) with version 3.8.19. 
Other processing and analysis were implemented in MATLAB R2022b 
(MathWorks Inc.). Details of the hyperparameters can be found in the 
Supplementary Materials section.

3. Results

3.1. ROIs segmentation for both MAP images and RF data

We applied the automatic segmentation algorithm to all samples in 
the dataset to define the ROIs. ROI selection is a critical step in radiomics 
analysis because accurate segmentation ensures that the extracted fea
tures are truly representative of the target tissue, allowing for more 
precise characterization and prediction of disease conditions. To eval
uate the performance of the segmentation algorithm, we randomly 
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selected several samples for visual inspection, as shown in Fig. 4.
The top row of Fig. 4 presents representative MAP images with red 

contours indicating the segmented ROIs generated by our proposed 
method. The results show that the ROIs closely follow the anatomical 
structures of the foot while successfully excluding irrelevant background 
areas, demonstrating high segmentation accuracy. The bottom row of 
Fig. 4 displays 3D renderings of the raw RF data. We adjusted the alpha 
map parameters to display low-amplitude signals and applied generic 
depth weighting to compensate for optical and acoustic attenuation in 
deeper tissue regions. These adjustments were used only for rendering 
and did not affect the data used for feature extraction or analysis. In 
these renderings, the blue stripe-like regions represent the automatically 
identified top and bottom boundaries of the segmented ROIs. These 
boundaries effectively restrict the ROI to the regions containing tissue 
PA signals.

The consistent segmentation performance observed across different 
samples in both MAP images and RF data underscores the robustness 
and reliability of the proposed algorithm. This ensures that only the 
relevant foot tissue regions are retained for the subsequent radiomics 
feature extraction process.

3.2. Feature extraction

We performed feature extraction on both the MAP images and RF 
data using the generated ROI masks, ensuring that all first-order statis
tical features and texture features were derived from the imaged tissue 
regions. In total, 1023 features were extracted from the MAP images, 
and 1092 features were extracted from the RF data for each sample. The 
difference in the number of features is due to the application of different 
image filters and the dimensionality of the data: the RF data were 
treated as 3D volumes, whereas the MAP images were processed as 2D 
pixel-based images.

3.3. Reproducibility test result

To eliminate radiomic features that are sensitive to minor variations, 
we assessed feature stability using the average CV. The quantified CV 
values of the extracted features are shown in Fig. 5(a), while the dis
tribution of CV values is illustrated in the histogram in Fig. 5(b). A black 
dashed line in the figure indicates the CV threshold (0.1) used to identify 
poorly reproducible features. Based on this criterion, we identified and 
excluded 653 features with low reproducibility. The remaining 1462 
features were retained for further analysis.

The main causes affecting the reproducibility of these 653 features 
are background, noise, and small variations in the scanning region. The 

applied Pyradiomics library extracts a comprehensive radiomic feature 
set from MAP image and RF data. However, some of the features focus 
on the image background and noise, which vary in every experiment. 
Also, some features are sensitive to small variations in scanning regions. 
Therefore, these features present poor performance in reproducibility 
tests.

3.4. P-value filtering by U test

We applied the Mann–Whitney U test with Bonferroni correction to 
identify features that showed statistical significance in predicting 
perfusion conditions. The adjusted p-values of the features are shown in 
Fig. 6(a), where the threshold for statistical significance is indicated by a 
black dashed line. In Fig. 6(a), background colors represent the types of 
image filters applied, and different marker shapes indicate feature 
classes. Additionally, features extracted from RF data and MAP images 
are distinguished by a top banner. To enhance visualization, the y-axis of 
Fig. 6(a) represents the negative logarithm of the adjusted p-values, and 
therefore higher y-axis values correspond to greater statistical signifi
cance. Based on this analysis, 20 features were identified as statistically 
significant for perfusion prediction and were selected for further 
evaluation.

3.5. Removal of highly correlated features

We examined the correlation among the significant features identi
fied through the U test to detect highly related feature pairs. The heat
map of the Pearson’s correlation coefficients is shown in Fig. 6(b), where 
feature pairs with strong correlations are highlighted by black rectan
gles. Based on this analysis, 6 highly correlated features were removed 
to reduce redundancy, and the remaining 14 features were retained for 
constructing the prediction models.

3.6. Integrated feature ranking and model performance analysis

Feature importance was evaluated using an integrated score derived 
from the mRMR method and the ReliefF algorithm. A backward search 
strategy was then applied to determine the optimal subset of features. 
The AUC values obtained from several machine learning models trained 
with different numbers of features are shown in Fig. 7(a1). In general, 
model performance improved as more features were included, with the 
KNN ensemble consistently outperforming SVM and random forest 
models in most cases.

Based on the highest AUC achieved on the training set, the KNN 
ensemble model using the 8 most significant features was selected as the 

Fig. 4. ROI segmentation demonstration of multiple samples. Top row (a to e) presents MAP images, and red contours indicate the segmented ROI by the proposed 
method. Bottom row (f to j) displays 3D raw RF data renderings, and blue stripe-like regions label the automatically identified top and bottom boundaries of the 
segmented ROIs. Scale bar: 20 mm.
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optimized model. This selection is indicated by a black arrow in Fig. 7
(a1). To further evaluate its performance, we plotted the receiver 
operating characteristic (ROC) curves for the training and test sets in 

Fig. 7(a2) and Fig. 7(a3), respectively. The optimized model achieved an 
AUC of 0.90 (95 % confidence interval: 0.84–0.95) on the training set 
and an AUC of 0.94 (95 % confidence interval: 0.86–0.99) on the test set. 

Fig. 5. Quantified coefficient of variation (CV) analysis of the features. (a) A scatter plot demonstrating the quantified CV among features. (b) The histogram of 
calculated CV. We applied logarithm transformation to CV in (b) for a better illustration. The threshold for considering the feature as poor-reproducible was set at 
10− 1 and was labeled by the black dashed line.

Fig. 6. Statistical significance and correlation analysis of extracted radiomic features from RF data and MAP images. (a) Quantified p-value of features by U test. 
Notably, the y-axis was set as -log10(p-value) for a better illustration. The p-value threshold of significance was set at 0.05 and was marked by black dashed line. (b) 
The Pearson’s correlation heatmap of significant features. Higher related feature pairs were marked by a black rectangle, and feature names were labeled at the left 
side of the figure. The same legend was used for image filters in (a) and (b).
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These results demonstrate the model’s strong ability to distinguish poor 
perfusion conditions from healthy foot tissue.

The confusion matrices of the optimized model for the training and 
test sets are shown in Fig. 7(a4) and (a5), respectively. The model 
demonstrated strong classification ability, with high sensitivity and 
specificity, indicating effective identification of both poor and good 
perfusion conditions. Precision was consistently high, reflecting a low 
false positive rate. The model also maintained stable accuracy across 
datasets and provided reliable negative predictive values. These results 
confirm that the proposed model achieves robust and generalizable 
performance, supporting its potential utility in clinical applications for 
perfusion condition prediction.

To evaluate the benefit of combining features from both RF data and 
MAP images, we repeated the same workflow using features from each 
data source independently. Results are shown in Fig. 7(b1–b5) for RF 
data and Fig. 7(c1–c5) for MAP images. The RF-based model selected 
five features and achieved AUCs of 0.86 (training) and 0.83 (test), as 
shown in Fig. 7(b2) and 7(b3). The MAP-based model, optimized with 
eleven features, reached AUCs of 0.89 (training) and 0.87 (test), shown 
in Fig. 7(c2) and 7(c3). Confusion matrices in Fig. 7(b4–b5) and Fig. 7
(c4–c5) indicate lower accuracy and predictive values compared to the 
integrated model, although sensitivity and specificity remained 
acceptable. These results suggest that combining RF and MAP features 
captures complementary information and leads to improved classifica
tion performance and model generalizability.

3.7. Comparison with other methods

To further validate the performance of the proposed method, we 
conducted a comprehensive comparison using evaluation metrics from 
various models. The top row of Fig. 8(a)–(d) displays the ROC curves for 
different models under various conditions to assess diagnostic accuracy. 
The bottom row, Fig. 8(e)–(h), shows the corresponding decision curve 
analysis (DCA) results, which evaluate clinical utility and net benefit. In 
all subfigures, the red bold curve represents the optimized model 
selected in this study.

The first column of Fig. 8 presents a direct comparison between the 
optimized model and SVM and random forest models trained on the 
same feature subset. The optimized model outperformed both SVM and 
random forest in terms of AUC and net benefit, consistent with previous 
findings.

For a more comprehensive comparison, we applied the Least Abso
lute Shrinkage and Selection Operator (LASSO) with five-fold cross- 
validation to identify significant features. LASSO is a widely used reg
ularization technique that performs both variable selection and regula
rization, helping to reduce overfitting by applying an L1 penalty. In this 
analysis, two feature subsets were generated based on the LASSO min
imum mean squared error (minMSE) point and the one standard error 
(1SE) point. Multiple models including the original LASSO model, KNN 
ensemble, SVM, and random forest were constructed using each LASSO- 
derived feature set. Their performance, shown in the second and third 
columns of Fig. 8, demonstrates that the optimized model proposed in 
this study achieved better performance compared to all LASSO-based 
models.

Fig. 7. Performance comparison of machine learning models trained on different feature sets. (a) Integrated features from both RF data and MAP images. (b) Features 
from RF data only. (c) Features from MAP images only. For each model, the first column ((a1) – (c1)) shows training AUC among the number of features involved, 
with the optimized feature number indicated by a black arrow. The second ((a2) – (c2)) and third columns ((a3) – (c3)) show ROC curves for training and test set, 
with corresponding AUC values and 95 % confidence intervals. The fourth column ((a4) – (c4) and (a5) – (c5)) presents confusion matrices summarizing classification 
performance on training and test sets. CI: Confidence interval; FPR: False positive rate; TPR: True positive rate; NPV: Negative predictive value.
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We also evaluated the effectiveness of the proposed integrated 
scoring approach. The fourth column of Fig. 8 compares the perfor
mance of KNN ensemble models built on features selected using the 
integrated scoring method, mRMR alone, and ReliefF alone. The results 
indicate that the integrated scoring method leads to superior perfor
mance compared to either individual method.

3.8. Physiological representation of selected features

The optimized model achieved the best performance compared to 
other models, showing great potential to be deployed for clinical deci
sion making. To investigate the physiological representations of selected 
features, three pairs of samples comparing healthy and unhealthy feet 
were demonstrated in Fig. 9. For each column of the figure, samples 
were collected from the same subject on the same date. The MAP images 
of healthy feet were presented in the top row in the blue box while 
images from unhealthy feet were shown in the bottom row in the red 

box. The predicted probability of unhealthy from the optimized model 
was marked in the top right corner. Meanwhile, we listed z-score 
normalized feature values for each image. Feature values were listed in 
tables following the order: GLCM Informational Measure of Correlation 
(IMC) 1 in RF data, Laplacian of Gaussian (LoG) (sigma=4.0 mm) 3D 
GLRLM Run Entropy in RF data, gradient GLCM Inverse Difference 
Moment Normalized (IDMN) in MAP image, wavelet HL GLCM Joint 
Entropy in MAP image, wavelet HHL GLCM Correlation in RF data, 
wavelet LLL GLCM IMC2 in RF data, wavelet LL GLSZM Small Area Low 
Gray Level Emphasis in MAP image, and square GLRLM Run Entropy in 
MAP image. These features were labeled as F1 to F8 for better 
discussion.

We categorized these features into three groups based on our ob
servations and comparison of PA images and quantified feature values 
from healthy and unhealthy feet. Feature values in each group were 
filled with blue, brown, and green, respectively.

Firstly, we observed that healthy feet usually have greater vessel 

Fig. 8. ROC and DCA from models built under various conditions. The top row of the figure presents the ROC curve and the bottom row displays DCA. The red curve 
represents the optimized model in all subfigures. RndF: random forest.

Fig. 9. Representative MAP images and feature distributions from healthy and unhealthy feet. Images of healthy feet were presented in the top row (blue box) while 
images from unhealthy feet were shown in the bottom row (red box). The predicted probability of unhealthy was marked in the top right corner in red for each case. 
The table adjacent to MAP images lists z-score normalized feature values. The annotations of each value are presented on the right side of the figure. Scale 
bar: 20 mm.

C. Huang et al.                                                                                                                                                                                                                                  Photoacoustics 46 (2025) 100776 

9 



density, which can be validated by four extracted features (features in 
blue cells). Feature GLCM IMC1 in RF data (F1) reflects correlation and 
dependency in texture patterns, and we observed F1 has a higher value 
in healthy feet, indicating greater global structural complexity which 
can be caused by more vessels. Feature LoG (sigma = 4.0 mm) 3D 
GLRLM Run Entropy in RF data (F2) quantifies randomness of runs in 
edge-enhanced RF data, and it also has higher value in healthy feet, 
demonstrating that healthy foot exhibits more complex edge informa
tion, indicative of more vessels and sharper structures compared to 
unhealthy feet. Feature gradient GLCM IDMN in MAP image (F3) has a 
higher value in unhealthy feet, suggesting that unhealthy feet exhibit 
more homogeneous local gradients and reduced rapid changes due to 
fewer vessels. Feature HL GLCM Joint Entropy in MAP image (F4) has a 
higher value in healthy feet. Elevated joint entropy indicates that more 
vessels in healthy feet contribute to texture complexity.

Secondly, we can also observe abnormal or ischemia tissue condi
tions in unhealthy feet according to feature analysis (features in brown 
boxes). Feature HHL GLCM Correlation in RF data (F5) measures linear 
dependency between pixel intensities in the HHL wavelet band. We 
found higher correlation values in unhealthy feet, suggesting a more 
rapid change in high-frequency RF data from unhealthy feet, which in
dicates disrupted or irregular textures. Meanwhile, Feature LLL GLCM 
IMC2 (F6) quantifies uniformity or predictability in texture patterns at a 
coarse scale. The analysis demonstrates that it has a greater value in 
healthy feet, which shows healthy feet have more intact and organized 
tissue structures. Feature LL GLSZM Small Area Low Gray Level 
Emphasis (F7) estimated small zones with low gray level intensities in 
smoothed MAP images, and results pointed out that unhealthy feet have 
higher feature value compared to healthy feet. It indicates a greater 
number of small zones with low intensity in unhealthy foot tissue re
gions, which might be due to ischemia tissue.

Besides, we also noticed there are more discontinued vessels in un
healthy feet. It can be proved by feature square GLRLM Run Entropy in 
MAP (F8, in green cell) which measures diversity in run lengths and gray 
level combinations in intensity-enhanced images. Unhealthy feet have 
greater feature value, demonstrating that vessel structures in unhealthy 
feet are more heterogeneous and less continuous, which aligns with 
reports of interrupted or disrupted vessels in feet with poor perfusion 
[26]. A summary of the physiological representation of features can be 
found in the supplementary material Tables S2 and S3.

In Fig. 9, feature analysis reveals consistent patterns between the 
extracted feature values and visual observations from the images. In 
MAP images of healthy feet (Fig. 9(a) to (c)), dense and continuous 
vascular networks are clearly visible. For example, in Fig. 9(b), features 
F1 and F2 reach their maximum values, while F3 reaches its minimum, 
indicating a complex vascular structure with well-defined edges and 
strong local gradients resulting from the rich vasculature. In contrast, 
MAP images of unhealthy feet exhibit distinct alterations. In Fig. 9(d), 
the vessel network appears sparse, consistent with low F1 and F2 values. 
At the same time, high F7 and F8 values correspond to blurred vessel 
boundaries and discontinuous structures, suggesting impaired vessel 
integrity and the presence of small ischemic tissue regions. In Fig. 9(e), 
although a relatively dense and sharp vascular network is present, the 
vessels appear tortuous and exhibit variable brightness along their paths 
(with bright spots on the vessels). This visual pattern aligns with the 
highest F5 and lowest F6 values, which are indicative of irregular 
texture patterns. Such tortuous vessel morphology may reflect the 
development of collateral (bypass) micro vessels in response to major 
vessel occlusion, a compensatory mechanism previously reported in 
ischemic tissues [54]. Finally, Fig. 9(f) shows poorly defined vessels, 
consistent with the lowest F2 and elevated F5 values, reflecting a loss of 
edge information and signs of tissue disruption. Overall, these findings 
demonstrate that the extracted radiomics features effectively capture 
physiological alterations associated with perfusion status in clinical PA 
foot imaging.

4. Discussion

In this study, we propose a radiomics-based method to predict the 
perfusion condition of foot ulcer patients using clinically acquired PA 
images. The automated workflow begins with the preprocessing of the 
acquired data, followed by the extraction of radiomics features from 
both the raw RF data and the reconstructed MAP images. These features 
are subsequently refined through a reproducibility test, the U test, and 
correlation analysis. We then ranked the importance of features using a 
proposed integrated score that combines the mRMR method and the 
ReliefF algorithm. A prediction model was built based on eight selected 
features. The optimized model achieved an AUC of 0.90 on the training 
set and 0.94 on the test set, demonstrating its effectiveness in accurately 
predicting perfusion conditions from PA images. Additionally, we 
compared the optimized model with alternative models developed using 
different feature selection strategies by evaluating both AUC and DCA. 
The results indicate that the optimized model outperformed the others in 
classification performance and provided the highest clinical utility.

Since there is no widely accepted and publicly available clinical PA 
foot imaging dataset, we constructed a dataset consisting of over 300 
clinical samples from more than 100 unique feet. Compared to previous 
studies that were limited by small sample sizes or conducted only on 
healthy volunteers, our dataset offers significant advantages for devel
oping machine learning models. These advantages include improved 
model accuracy, reduced overfitting, and enhanced generalization.

We extracted over 2000 radiomics features from both 3D RF data and 
2D reconstructed MAP images, providing a comprehensive and diverse 
feature set. Unlike traditional metrics such as vessel density or vessel 
occupancy, radiomics features can capture subtle image characteristics 
that are not easily detected by the human eye. These hidden features, 
often associated with tissue heterogeneity and underlying biological 
changes, can offer valuable insights into disease processes. Furthermore, 
features extracted directly from RF data may contain more informative 
content, as reconstruction algorithms can potentially discard important 
details.

The entire workflow, including preprocessing, feature extraction and 
selection, and model building, is fully automatic. This removes human 
involvement and greatly improves the method’s consistency and reli
ability. Notably, the optimized model achieved high AUC and great 
clinical net benefit, indicating strong predictive performance for 
assessing perfusion conditions and highlighting its potential for clinical 
application. Additionally, we analyzed the physiological representations 
of the selected features and found that the optimized model primarily 
focused on vessel density, abnormal tissue structures, and disrupted 
vessels to make predictions.

Despite the encouraging results, there are still several limitations 
that can be addressed in future work. Firstly, the dataset used in this 
study, while being the largest in photoacoustic-based foot imaging, is 
still much smaller than radiomic studies in other medical imaging mo
dalities [52]. The limited data size may affect the generalizability of the 
findings. This limitation can be mitigated by continuing clinical data 
collection to expand the dataset. Secondly, the current model is 
restricted to binary classification due to the absence of detailed clinical 
scoring as ground truth. This issue could be addressed by incorporating 
transcutaneous oxygen pressure (TcPO₂) measurements, which would 
provide quantitative reference values for perfusion assessment and 
enable more nuanced classification. Finally, the lack of longitudinal 
study design prevents the evaluation of perfusion changes over time. 
Future studies incorporating longitudinal data would be valuable for 
tracking disease progression and assessing the temporal dynamics of 
perfusion status.

5. Conclusion

In summary, this study presents a radiomics-based framework for 
predicting perfusion conditions in foot tissues using PA imaging. By 
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extracting over 2000 quantitative features from both raw RF data and 
reconstructed MAP images acquired with a single-wavelength portable 
PA system, our method captures complex image patterns that are diffi
cult to detect visually. A fully automated workflow was implemented, 
encompassing data preprocessing, reproducibility testing, statistical 
filtering, and feature selection using an integrated scoring method. The 
optimized KNN ensemble model, trained on 8 selected features, ach
ieved an AUC of 0.90 on the training set and 0.94 on the test set. The 
selected features revealed meaningful associations with perfusion- 
related physiological changes, such as vessel density, tissue irregular
ity, and vascular discontinuity. The proposed approach demonstrates 
strong predictive performance and clinical relevance, offering a robust 
and interpretable solution for perfusion assessment in photoacoustic 
foot imaging.
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initiative, arXiv preprint arXiv:1612.07003, 2016.

[39] H. Benoit-Cattin, Texture analysis for magnetic resonance imaging, Texture Anal. 
Magn. Reson. (2006).

[40] R.M. Haralick, K. Shanmugam, I.H. Dinstein, Textural features for image 
classification, IEEE Trans. Syst. Man Cybern. (6) (1973) 610–621.

[41] M. Galloway, Texture classification using gray level run length, Comput. Graph. 
Image Process 4 (2) (1975) 172–179.

[42] G. Thibault, J. Angulo, F. Meyer, Advanced statistical matrices for texture 
characterization: application to cell classification, IEEE Trans. Biomed. Eng. 61 (3) 
(2013) 630–637.

[43] M. Amadasun, R. King, Textural features corresponding to textural properties, IEEE 
Trans. Syst. Man Cybern. 19 (5) (1989) 1264–1274.

[44] C. Sun, W.G. Wee, Neighboring gray level dependence matrix for texture 
classification, Comput. Vis. Graph. Image Process. 23 (3) (1983) 341–352.

[45] A. Zwanenburg, Radiomics in nuclear Medicine: robustness, reproducibility, 
standardization, and how to avoid data analysis traps and replication crisis, Eur. J. 
Nucl. Med. Mol. Imaging 46 (13) (2019) 2638–2655.

[46] J.D. Gibbons, S. Chakraborti, Nonparametric Statistical Inference: Revised and 
Expanded, CRC press, 2014.

[47] E.W. Weisstein, Bonferroni correction, https://mathworld. wolfram. com/, 2004.
[48] F. Galton, Typical Laws of Heredity, William Clowes and Sons, 1877.
[49] C. Ding, H. Peng, Minimum redundancy feature selection from microarray gene 

expression data, J. Bioinforma. Comput. Biol. 3 (02) (2005) 185–205.
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