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Accurate assessment of tissue perfusion is essential for managing chronic foot ulcers in patients with diabetes and
peripheral arterial disease. While photoacoustic (PA) imaging enables high-resolution visualization of vascular
structures, current perfusion evaluation methods are limited. We propose a fully automated radiomics-based
framework for predicting perfusion conditions using single-wavelength clinical PA foot imaging. Radiomics
features were extracted from both raw radiofrequency (RF) signals and reconstructed maximum amplitude
projection (MAP) images. After reproducibility testing and statistical filtering, features were ranked using a
combined minimum redundancy maximum relevance (mRMR) and ReliefF approach. A k-nearest neighbors
ensemble model trained on eight selected features achieved an area under the curve (AUC) of 0.90 (training) and
0.94 (test). The selected features corresponded with physiological indicators such as vessel density, tissue
structure, and vascular discontinuity. This study demonstrates a reliable and interpretable method for perfusion
assessment in PA imaging with strong clinical potential.

1. Introduction edema or cellulitis [9]. Doppler ultrasound primarily evaluates proximal

vessels, with low sensitivity to microvasculature [7]. X-ray computed

Chronic leg wounds are a growing concern among the aging popu-
lation, affecting over 6.5 million Americans and resulting in annual
treatment costs of $25 billion in the United States [1-3]. These ulcers
often originate from vascular diseases at both macrovascular and
microvascular levels, leading to ischemia and impaired healing [4].
Revascularization surgery is an effective intervention that restores
arterial blood flow to ulcers [5]. However, in patients with diabetes or
peripheral arterial disease, perfusion may be adequate in one vessel but
insufficient in areas of tissue loss [5,6], highlighting the need for accu-
rate perfusion assessment to optimize patient care.

Current clinical tests for assessing blood perfusion remain inade-
quate [2]. Generalized approaches such as the ankle-brachial index
(ABI) and toe-brachial index (TBI) cannot resolve perfusion within
specific tissue regions and are limited by vessel calcification, loss of
digits, and operator variability [7]. Photoplethysmography (PPG) is
affected by skin conditions [8], and transcutaneous oxygen pressure
(TcPO2) requires prolonged acquisition times and is influenced by
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tomography (CT) angiography has ionizing radiation and contrast agent
injection. = Magnetic resonance angiography = (MRA) offers
high-resolution vascular imaging but is limited by long scan times, high
cost, and often the need for gadolinium-based contrast [2].
Near-infrared fluorescence angiography with indocyanine green (ICG)
can visualize tissue perfusion, but clinical use is constrained by the need
for contrast injection [9].

Photoacoustic (PA) tomography (PAT) is an emerging modality
based on photoacoustic effect, which enables mapping of the optical
absorption through acoustic detection [10-13]. By overcoming the
diffusion limit inherent in traditional optical imaging, PAT can generate
high-resolution images in deep tissues, as acoustic waves experience
significantly less attenuation than light. Leveraging these advance-
ments, PAT shows great potential for both preclinical research and
clinical practice across diverse fields [14], including but not limited to
breast cancer diagnosis [15-17], palm biometric extraction [18], thy-
roid cancer detection [19], lymphatic disease monitoring [20], and
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melanoma diagnosis [21].

Recent studies have demonstrated the potential of PAT systems to
predict perfusion conditions using PAT images. Choi et al. reported that
total hemoglobin concentration, hemoglobin oxygen saturation, and
vessel density could accurately describe the microvascular change due
to venous occlusion [22], but these findings were based on healthy
volunteers experiments only. Yang et al. evaluated vascular function
through post-occlusive reactive hyperemia [23], but the occlusion pro-
cess could be painful and potentially harmful for patients with periph-
eral artery disease. Wang et al. used the vessel-to-background ratio as an
indicator of perfusion [24], while Huang et al. proposed an integrated
index combining vessel density, occupancy, and sharpness for perfusion
estimation [25]. Huynh et al. found vessel tortuosity to be strongly
associated with peripheral vessel disease [26]. However, the accuracy of
these evaluation metrics often depends on reliable vessel segmentation.
In addition, further validation might be necessary due to the limited
sample sizes in these studies. Mantri et al. proposed that the rate of PA
intensity change could indicate the angiogenesis rate [27]. However, the
intensity-only analysis is subject to laser-dependent fluctuations and
excitation light conditions.

Radiomics is a rapidly evolving field in medical imaging, leveraging
data-characterization algorithms to extract a wide range of quantitative
features, which are often beyond human visual detection [28]. It has
been increasingly applied to medical imaging modalities such as mag-
netic resonance imaging, ultrasound, and computed tomography,
uncovering critical insights for disease classification and prognosis [28,
29]. Recently, radiomics has also been adapted for both in-vivo and
ex-vivo photoacoustic imaging, highlighting its potential to enhance
diagnostic capabilities [30-33]. This approach offers a transformative
opportunity to predict perfusion conditions more effectively by
providing a detailed and comprehensive analysis of PA imaging data.

In this study, we present a fully automated radiomics-based
approach for predicting perfusion conditions using single-wavelength
clinical PA foot imaging. The method involves extracting a compre-
hensive set of radiomics features from both raw radiofrequency (RF)
signals and reconstructed maximum amplitude projection (MAP) images
acquired by a portable single-wavelength PA system. Key features are
identified through a systematic selection process that includes repro-
ducibility testing, statistical filtering, and feature ranking. These
selected features are then used to train machine learning models for
classifying perfusion status. Notably, the extracted features are inter-
pretable and exhibit clear associations with physiological indicators of
perfusion, such as vessel density, tissue architecture, and vascular
discontinuity. This approach not only improves prediction accuracy but
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also deepens the understanding of the relationship between PA signals
and perfusion conditions, providing valuable insights to support clinical
decision-making.

2. Methods
2.1. Workflow

The proposed workflow consists of four main stages: preprocessing,
feature extraction, feature selection, and model evaluation, as shown in
Fig. 1. During preprocessing, regions of interest (ROIs) are automatically
generated from both the PA RF data and the reconstructed MAP images
using a customized automatic segmentation algorithm. In the feature
extraction stage, first-order statistical and texture features are computed
from both data types using the PyRadiomics library [34], with various
image filters applied to enhance feature diversity and representation.
Feature selection is carried out through a series of steps, including a
reproducibility test, the Mann-Whitney U test with Bonferroni correc-
tion, correlation analysis, and feature importance ranking. Subse-
quently, machine learning models including k-nearest neighbors (KNN)
ensemble, support vector machine (SVM), and random forest are trained
using the selected features. Model performance is evaluated using the
area under the curve (AUC) metric to identify the optimized model. In
addition, we examine the physiological relevance of selected features to
understand their associations with perfusion-related characteristics.

2.2. Data acquisition

The PAT images in this study were acquired through a portable im-
aging system proposed in [25]. The experimental setup of the imaging
system was presented in Fig. 2. As demonstrated in Fig. 2(a), the scan-
ning head of the system consists of a customized linear-array transducer
(Imasonics SAS, France) with 128 elements and 2.25 MHz central fre-
quency, a fiber bundle, a high-performance cold mirror (Edmund Optics
Inc), and a 3D-printed base. The transducer has an 86-mm total length to
cover the foot. The transducer and fiber bundle head are placed verti-
cally to each other, with the cold mirror attached at a 45-degree to fiber
bundle. This design achieves co-planar light illumination and acoustic
detection, optimizing the imaging depth of the system. To ensure that
the scanner head aligns with the surface of the foot dorsum, we used a
manual rotation stage mounted at the top of the scanning head. The
stage helped to reduce variation in the lateral distances to foot surface.
An adjustable footrest plate is fixed under the water tank to provide
proper support for the subject’s foot to improve the imaging stability. A
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Fig. 2. Experimental setup of the clinical photoacoustic imaging system. (a). A schematic drawing of the imaging system. The light illumination is marked in green,
while the acoustic propagation is labeled in yellow. (b) A photograph of the imaging system. Most equipment of the system is installed on a cart, except for the
portable laser.

10 Hz portable laser (Big Sky Laser) is employed to provide photo- sampling rate. A photo of the imaging system is shown in Fig. 2(b). Most
acoustic excitation, and a portable data acquisition (DAQ) unit (Photo- equipment of the system is installed in a cart, except for the portable
sound Technologies Inc.) is used to digitize PA signals with a 40 MHz laser. Exemplary PA vascular images of feet can be found in
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Fig. 3. A flowchart illustrating the process of images selection.
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Supplementary Material Fig. S1.

Approval of all ethical and experimental procedures and protocols
was granted by the Institutional Review Boards of the University at
Buffalo under Protocol No. STUDY00001165 in Oct 2017. All human
subjects provided informed consent after fully understanding the im-
plications of their participation.

From April 2023 to August 2024, a total of 305 PA images were
acquired from 113 feet of 73 patients recruited by clinical collaborators.
As illustrated in Fig. 3, inclusion and exclusion criteria were systemat-
ically applied to ensure reliable data quality. First, 50 images were
excluded because the corresponding patients did not have recent clinical
diagnostic records. During clinical data collection, a small number of
acquisitions resulted in invalid or unusable PA images due to chal-
lenging patient conditions or environmental factors. For instance, some
samples showed extremely weak or absent PA signals or lacked visible
vascular structures within the imaging region. We have used the quality
score in Supplementary material Fig. S2 to identify these unclear PA
images. Together with 22 images affected by motion artifacts, a total of
52 images were excluded at this stage. Subsequently, 25 additional
images were removed due to an improper distance between the foot
surface and the transducer, which can distort signal accuracy. After
confirming the clinical report and image data quality, 178 images from
79 feet (52 patients) were included for feature extraction and analysis.
The final dataset was divided based on feet into a training set (143
images from 63 feet) and a test set (35 images from 16 feet).

We reviewed medical records and physician notes, considered
diagnostic results including Ankle-Brachial Index (ABI) and Toe-
Brachial Index (TBI), and visually inspected the foot for the presence
of wounds or ulcers. A foot was labeled as unhealthy if clinical diagnosis
or vascular tests indicated evidence of ongoing peripheral arterial dis-
ease or if visible wounds were present. Conversely, a subject was labeled
as healthy if the clinical evaluation, ABI/TBI results, and visual in-
spection showed no signs of disease or foot wounds.

The clinical characteristics of enrolled patients were presented in
Table 1. Among 79 enrolled feet from 52 patients, 25 feet were classified
as healthy and 54 feet as unhealthy. The median age across all feet was
65 years (interquartile range [58, 72.25]), with no significant difference
between healthy and unhealthy groups (p = 0.2492). Laterality was
balanced, with 38 (48 %) left feet and 41 (52 %) right feet (p = 0.6370).
The gender distribution was 36 male (46 %) and 42 female (54 %) and
likewise showed no significant group difference (p = 0.4349). In terms
of race, 66 feet (84 %) were White, 12 (15 %) African American, and 1
(1 %) other; again, no difference between groups (p = 0.2269). Ulcer
presence was seen in 22 feet (28 %) and was significantly more common
in the unhealthy group (41 % vs. 0 %, p = 0.0002). P-value in Table 1 is
calculated by U test for continuous variables and Chi-Squared test for
categorical variables.

Table 1
Clinical characteristics of the recruited patients.

Variable Total Healthy feet ~ Poor perfusion P-
(n=79 (n =25) feet value
feet) (n=54)
Age (years), median 65 [58, 69.5 [58, 65 [57.75, 72] 0.2492
[Q1, Q3] 72.25] 80.5]

Laterality, n (%) 0.6370
Left foot 38 (48 %) 13 (52 %) 25 (46 %)
Right foot 41 (52 %) 12 (48 %) 29 (54 %)

Gender, n (%) 0.4349
Male 36 (46 %) 13 (52 %) 23 (43 %)
Female 42 (54 %) 12 (48 %) 31 (57 %)

Race, n (%) 0.2269
White 66 (84 %) 19 (76 %) 47 (87 %)
African American 12 (15 %) 5 (20 %) 7 (13 %)
Other 1(1 %) 1 (4 %) 0 (0 %)

Ulcer Present, n (%) 22 (28 %) 0 (0 %) 22 (41 %) 0.0002
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2.3. Data preprocessing

2.3.1. ROI segmentation for RF data

To enhance the reproducibility and repeatability of the study, we
developed an automatic algorithm to label the ROIs in RF data.
Considering the existence of the electromagnetic inference (EMI) noise,
the wavelet filter was first applied to the RF data to improve the
contrast. We then utilized the Hilbert transformation to compute the
envelope of the bipolar-shaped RF signals. To simplify the analysis, each
frame was compressed into a 1D array by summing the RF data along the
lateral direction, followed by smoothing using a moving mean filter
along axial direction to reduce noise.

Given that foot tissue exhibits significantly stronger PA responses
than water, potential peaks were identified in the 1D array based on a
minimum prominence of 25 % of the maximum value. To ensure con-
sistency, peaks were refined by considering their locations across adja-
cent frames. The starting point of the ROI was defined as the first point
exceeding 20 % of the peak height on the peak’s rising edge. The axial
depth of the ROI was fixed at 1000 pixels (approximately 38.5 mm) to
preserve maximum information.

In this study, the raw RF data were laterally summed into a one-
dimensional axial profile to enable efficient and robust detection of
tissue boundaries. This approach focuses on the axial signal distribution,
while lateral variation was minimized by aligning the scanning head
with the foot dorsum using a rotation stage.

Notably, while extensive processing was conducted to extract ROISs,
the raw bipolar RF data was saved for feature extraction to maintain
data integrity.

2.3.2. MAP image reconstruction and ROI segmentation

The acquired RF signals were initially filtered by a 2-5 MHz band-
pass filter and then reconstructed with the delay-and-sum method [35].
In our current workflow, the reconstruction process already utilizes in-
formation from the ROIs identified in the RF data. Specifically, the axial
start point for reconstruction is set at the upper boundary of the ROIs
identified in the RF data and the end point was calculated automatically
based on the end depth and view angle. This process enables automatic
and consistent reconstruction without manual intervention, thereby
improving the reproducibility and repeatability of the study. To mini-
mize variations caused by differing skin tones and the presence of hair,
the reconstructed images underwent skin layer removal using SL-Net
[36]. The investigation on the performance of skin removal procedure
was presented in Supplementary material (Fig. S3). The reconstructed
data was then normalized by scaling the intensity values to a range
between 0 and 1, compensating for the optical attenuation caused by
skin layers with different skin tones.

Given the system’s large scanning window (86 mm laterally and
100 mm in the elevational direction), the foot occupies only a portion of
the image in most cases. To focus solely on the features of foot tissues,
we developed an automated method to extract the ROI of the foot for
further processing. The skin-removed reconstructed image was fed into a
3D FD-UNet to suppress noise and enhance vasculature [37]. Following
enhancement, vessels in the MAP image were segmented by applying a
threshold set to the 95th percentile of the image’s histogram. Although
this high threshold excluded some smaller vessels, the primary vascu-
lature was reserved. A convex hull was subsequently generated from the
binarized vessels to define the ROI for the MAP image. A more detailed
workflow of ROI selection was presented in the Workflow for ROIs Se-
lection and Fig. S4 in the Supplementary Material.

2.4. Radiomic feature extraction

To extract radiomic features, we utilized the Pyradiomics library, an
open-source and widely adopted platform that provides standardized
tools for reproducible feature extraction. Prior to the feature extraction,
several image filters were applied to ensure a comprehensive analysis of
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both RF data and reconstructed MAP images. The application of a
diverse range of filters enriched the variety of extracted features by
highlighting distinct image properties such as intensity, texture, edges,
and multiscale patterns. This approach enhanced the sensitivity and
robustness of radiomics analysis, enabling improved characterization of
complex image data while reducing biases associated with raw intensity
values.

To discretize gray levels in the RF data and MAP images, we set a bin
width of 25 for MAP images and 1000 for RF data. Additionally, to
optimize computational efficiency, the RF data was down sampled by a
factor of four, reducing the sampling frequency from 40 MHz to 10 MHz.
According to the Nyquist-Shannon sampling theorem, a 10 MHz sam-
pling frequency is sufficient to retain meaningful information for a
transducer with a central frequency of 2.25 MHz.

For both original and filtered images, features from various feature
classes were extracted for each image type. Specifically, 18 first-order
features (histogram statistics) were computed to describe the intensity
distribution of voxels within the ROI [38,39]. Furthermore, 73 texture
features from calculated from several matrices, including 22 features
from Gray-level Cooccurrence Matrix (GLCM) [40], 16 features
Gray-level Run-length Matrix (GLRLM) [41], 16 features from
Gray-level Size Zone Matrix (GLSZM) [42], 5 features from Neighboring
Gray Tone Difference Matrix (NGTDM) [43] and 14 features from
Gray-level Dependence Matrix (GLDM) [44]. It is notable that features
extracted from MAP images and raw RF data are different. Specifically,
MAP images were treated as 2D data while RF data were treated as 3D
volumes, and distinct image filters were applied during preprocessing to
enhance feature diversity in each domain. These features provide a
comprehensive representation of intensity and texture patterns within
the data. The image filters used in this study are summarized in Sup-
plementary Material Table S1.

2.5. Dataset splitting

The dataset was divided into training and test sets using a stratified
sampling approach to preserve the proportion of healthy and unhealthy
cases in both subsets. To avoid data leakage, the split was performed
based on individual feet, ensuring that samples originating from the
same foot were assigned exclusively to either the training set or the test
set. The division followed an 80:20 ratio, with 80 % of the data allocated
to the training set and the remaining 20 % to the test set. The samples in
the test sets were used for model evaluation only and were not involved
in feature selection or machine learning model training.

2.6. Feature selection

2.6.1. Reproducibility examination

Considering that some radiomics features are sensitive to image
acquisition and processing settings [45], we examined features extrac-
ted from different samples but acquired from the same foot on the same
date to verify the reproducibility. The coefficient of variation (CV) was
applied to estimate the variance between features from samples ob-
tained from the same foot on the same date. The calculated CV was
averaged among subjects, and the final threshold for the average CV was
set as 0.1. Features with CV larger than this value were considered as
poor reproducible and were not enrolled in the following analysis. This
procedure aims to eliminate features sensitive to small variations.

2.6.2. Initial feature filtering with U test

After removing poorly reproducible features, we would like to
discover features which contain important information about blood
perfusion. Therefore, we implemented the Mann-Whitney-Wilcoxon test
(U test) to identify the potential features related to the perfusion con-
dition [46]. Since there were a large number of features involved in the
U test, Bonferroni correction was adopted in this study to adjust p-values
to account for multiple comparisons and control the risk of false
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positives [47]. The significance level was set at 0.05, features with
adjusted p-values lower than the threshold were considered as signifi-
cantly related to the perfusion condition and initially selected for further
processing.

2.6.3. Correlation analysis

Considering the large number of extracted features, there is a high
possibility that some features correlate with each other. The presence of
highly correlated features can lead to redundancy and multicollinearity,
especially for studies with a relatively small dataset. We conducted a
correlation analysis for features selected by the U test by computing the
pair-wise Pearson’s correlation coefficient (PCC) [48]. In this study, we
set the correlation coefficient threshold at 0.8 to consider the feature
pairs highly related. For these highly related feature pairs, we selected
the most important feature determined by their p-value. Removing these
correlated features contributes to improved model stability, interpret-
ability and performance.

2.6.4. Feature ranking

To identify the most relevant features for tissue perfusion, we
employed a comprehensive feature selection process combining mini-
mum Redundancy Maximum Relevance (mRMR) [49], and ReliefF al-
gorithms [50]. These two methods assess feature importance from
relevance with minimal redundancy and neighborhood-based relevance,
respectively. The feature importance was evaluated by these two
methods independently. An integrated ranking was then computed for
each feature by summing its ranks estimated by the two methods. Fea-
tures were subsequently ordered by their integrated scores with lower
scores indicating higher overall importance.

A backward search was initialized to identify the optimized combi-
nations of features for perfusion prediction. Starting from the set con-
taining all features involved, each searching step will remove the least
important feature based on their ranking, until only the most significant
feature is used for building the machine learning model. This method
evaluated features in multiple aspects, making the feature ranking
robust and computationally efficiency for this task.

2.6.5. Machine learning model construction

Based on filtered features, we implemented three machine learning
models: k-nearest neighbors (KNN) ensemble [51], support vector ma-
chine (SVM) [52], and random forest [53]. Model training was con-
ducted using a five-fold cross-validation strategy to prevent overfitting.

The primary metric used for model evaluation was the area under the
receiver operating characteristic curve. AUC was selected for its ability
to assess the model’s discriminatory power across all classification
thresholds, providing a comprehensive measure of performance. The
comparative analysis of the AUC values obtained from the KNN
ensemble, SVM, and random forest models enabled the identification of
the most effective approach for radiomics analysis.

In the aforementioned workflow, the skin removal (SL-Net), vessel
enhancement (3D FDUNet), and radiomics feature extraction were
conducted in Python (Python Software Foundation) with version 3.8.19.
Other processing and analysis were implemented in MATLAB R2022b
(MathWorks Inc.). Details of the hyperparameters can be found in the
Supplementary Materials section.

3. Results
3.1. ROIs segmentation for both MAP images and RF data

We applied the automatic segmentation algorithm to all samples in
the dataset to define the ROIs. ROI selection is a critical step in radiomics
analysis because accurate segmentation ensures that the extracted fea-
tures are truly representative of the target tissue, allowing for more
precise characterization and prediction of disease conditions. To eval-
uate the performance of the segmentation algorithm, we randomly



C. Huang et al.

selected several samples for visual inspection, as shown in Fig. 4.

The top row of Fig. 4 presents representative MAP images with red
contours indicating the segmented ROIs generated by our proposed
method. The results show that the ROIs closely follow the anatomical
structures of the foot while successfully excluding irrelevant background
areas, demonstrating high segmentation accuracy. The bottom row of
Fig. 4 displays 3D renderings of the raw RF data. We adjusted the alpha
map parameters to display low-amplitude signals and applied generic
depth weighting to compensate for optical and acoustic attenuation in
deeper tissue regions. These adjustments were used only for rendering
and did not affect the data used for feature extraction or analysis. In
these renderings, the blue stripe-like regions represent the automatically
identified top and bottom boundaries of the segmented ROIs. These
boundaries effectively restrict the ROI to the regions containing tissue
PA signals.

The consistent segmentation performance observed across different
samples in both MAP images and RF data underscores the robustness
and reliability of the proposed algorithm. This ensures that only the
relevant foot tissue regions are retained for the subsequent radiomics
feature extraction process.

3.2. Feature extraction

We performed feature extraction on both the MAP images and RF
data using the generated ROI masks, ensuring that all first-order statis-
tical features and texture features were derived from the imaged tissue
regions. In total, 1023 features were extracted from the MAP images,
and 1092 features were extracted from the RF data for each sample. The
difference in the number of features is due to the application of different
image filters and the dimensionality of the data: the RF data were
treated as 3D volumes, whereas the MAP images were processed as 2D
pixel-based images.

3.3. Reproducibility test result

To eliminate radiomic features that are sensitive to minor variations,
we assessed feature stability using the average CV. The quantified CV
values of the extracted features are shown in Fig. 5(a), while the dis-
tribution of CV values is illustrated in the histogram in Fig. 5(b). A black
dashed line in the figure indicates the CV threshold (0.1) used to identify
poorly reproducible features. Based on this criterion, we identified and
excluded 653 features with low reproducibility. The remaining 1462
features were retained for further analysis.

The main causes affecting the reproducibility of these 653 features
are background, noise, and small variations in the scanning region. The
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applied Pyradiomics library extracts a comprehensive radiomic feature
set from MAP image and RF data. However, some of the features focus
on the image background and noise, which vary in every experiment.
Also, some features are sensitive to small variations in scanning regions.
Therefore, these features present poor performance in reproducibility
tests.

3.4. P-value filtering by U test

We applied the Mann-Whitney U test with Bonferroni correction to
identify features that showed statistical significance in predicting
perfusion conditions. The adjusted p-values of the features are shown in
Fig. 6(a), where the threshold for statistical significance is indicated by a
black dashed line. In Fig. 6(a), background colors represent the types of
image filters applied, and different marker shapes indicate feature
classes. Additionally, features extracted from RF data and MAP images
are distinguished by a top banner. To enhance visualization, the y-axis of
Fig. 6(a) represents the negative logarithm of the adjusted p-values, and
therefore higher y-axis values correspond to greater statistical signifi-
cance. Based on this analysis, 20 features were identified as statistically
significant for perfusion prediction and were selected for further
evaluation.

3.5. Removal of highly correlated features

We examined the correlation among the significant features identi-
fied through the U test to detect highly related feature pairs. The heat-
map of the Pearson’s correlation coefficients is shown in Fig. 6(b), where
feature pairs with strong correlations are highlighted by black rectan-
gles. Based on this analysis, 6 highly correlated features were removed
to reduce redundancy, and the remaining 14 features were retained for
constructing the prediction models.

3.6. Integrated feature ranking and model performance analysis

Feature importance was evaluated using an integrated score derived
from the mRMR method and the ReliefF algorithm. A backward search
strategy was then applied to determine the optimal subset of features.
The AUC values obtained from several machine learning models trained
with different numbers of features are shown in Fig. 7(al). In general,
model performance improved as more features were included, with the
KNN ensemble consistently outperforming SVM and random forest
models in most cases.

Based on the highest AUC achieved on the training set, the KNN
ensemble model using the 8 most significant features was selected as the
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Fig. 4. ROI segmentation demonstration of multiple samples. Top row (a to e) presents MAP images, and red contours indicate the segmented ROI by the proposed
method. Bottom row (f to j) displays 3D raw RF data renderings, and blue stripe-like regions label the automatically identified top and bottom boundaries of the

segmented ROIs. Scale bar: 20 mm.
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Fig. 5. Quantified coefficient of variation (CV) analysis of the features. (a) A scatter plot demonstrating the quantified CV among features. (b) The histogram of
calculated CV. We applied logarithm transformation to CV in (b) for a better illustration. The threshold for considering the feature as poor-reproducible was set at
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optimized model. This selection is indicated by a black arrow in Fig. 7
(al). To further evaluate its performance, we plotted the receiver
operating characteristic (ROC) curves for the training and test sets in

Fig. 7(a2) and Fig. 7(a3), respectively. The optimized model achieved an
AUC of 0.90 (95 % confidence interval: 0.84-0.95) on the training set
and an AUC of 0.94 (95 % confidence interval: 0.86-0.99) on the test set.
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Fig. 7. Performance comparison of machine learning models trained on different feature sets. (a) Integrated features from both RF data and MAP images. (b) Features
from RF data only. (c) Features from MAP images only. For each model, the first column ((al) - (c1)) shows training AUC among the number of features involved,
with the optimized feature number indicated by a black arrow. The second ((a2) - (c2)) and third columns ((a3) - (¢3)) show ROC curves for training and test set,
with corresponding AUC values and 95 % confidence intervals. The fourth column ((a4) — (c4) and (a5) - (c5)) presents confusion matrices summarizing classification
performance on training and test sets. CI: Confidence interval; FPR: False positive rate; TPR: True positive rate; NPV: Negative predictive value.

These results demonstrate the model’s strong ability to distinguish poor
perfusion conditions from healthy foot tissue.

The confusion matrices of the optimized model for the training and
test sets are shown in Fig. 7(a4) and (a5), respectively. The model
demonstrated strong classification ability, with high sensitivity and
specificity, indicating effective identification of both poor and good
perfusion conditions. Precision was consistently high, reflecting a low
false positive rate. The model also maintained stable accuracy across
datasets and provided reliable negative predictive values. These results
confirm that the proposed model achieves robust and generalizable
performance, supporting its potential utility in clinical applications for
perfusion condition prediction.

To evaluate the benefit of combining features from both RF data and
MAP images, we repeated the same workflow using features from each
data source independently. Results are shown in Fig. 7(b1-b5) for RF
data and Fig. 7(c1-c5) for MAP images. The RF-based model selected
five features and achieved AUCs of 0.86 (training) and 0.83 (test), as
shown in Fig. 7(b2) and 7(b3). The MAP-based model, optimized with
eleven features, reached AUCs of 0.89 (training) and 0.87 (test), shown
in Fig. 7(c2) and 7(c3). Confusion matrices in Fig. 7(b4-b5) and Fig. 7
(c4-c5) indicate lower accuracy and predictive values compared to the
integrated model, although sensitivity and specificity remained
acceptable. These results suggest that combining RF and MAP features
captures complementary information and leads to improved classifica-
tion performance and model generalizability.

3.7. Comparison with other methods

To further validate the performance of the proposed method, we
conducted a comprehensive comparison using evaluation metrics from
various models. The top row of Fig. 8(a)-(d) displays the ROC curves for
different models under various conditions to assess diagnostic accuracy.
The bottom row, Fig. 8(e)-(h), shows the corresponding decision curve
analysis (DCA) results, which evaluate clinical utility and net benefit. In
all subfigures, the red bold curve represents the optimized model
selected in this study.

The first column of Fig. 8 presents a direct comparison between the
optimized model and SVM and random forest models trained on the
same feature subset. The optimized model outperformed both SVM and
random forest in terms of AUC and net benefit, consistent with previous
findings.

For a more comprehensive comparison, we applied the Least Abso-
lute Shrinkage and Selection Operator (LASSO) with five-fold cross-
validation to identify significant features. LASSO is a widely used reg-
ularization technique that performs both variable selection and regula-
rization, helping to reduce overfitting by applying an L1 penalty. In this
analysis, two feature subsets were generated based on the LASSO min-
imum mean squared error (minMSE) point and the one standard error
(1SE) point. Multiple models including the original LASSO model, KNN
ensemble, SVM, and random forest were constructed using each LASSO-
derived feature set. Their performance, shown in the second and third
columns of Fig. 8, demonstrates that the optimized model proposed in
this study achieved better performance compared to all LASSO-based
models.
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represents the optimized model in all subfigures. RndF: random forest.

We also evaluated the effectiveness of the proposed integrated
scoring approach. The fourth column of Fig. 8 compares the perfor-
mance of KNN ensemble models built on features selected using the
integrated scoring method, mRMR alone, and ReliefF alone. The results
indicate that the integrated scoring method leads to superior perfor-
mance compared to either individual method.

3.8. Physiological representation of selected features

The optimized model achieved the best performance compared to
other models, showing great potential to be deployed for clinical deci-
sion making. To investigate the physiological representations of selected
features, three pairs of samples comparing healthy and unhealthy feet
were demonstrated in Fig. 9. For each column of the figure, samples
were collected from the same subject on the same date. The MAP images
of healthy feet were presented in the top row in the blue box while
images from unhealthy feet were shown in the bottom row in the red

box. The predicted probability of unhealthy from the optimized model
was marked in the top right corner. Meanwhile, we listed z-score
normalized feature values for each image. Feature values were listed in
tables following the order: GLCM Informational Measure of Correlation
(IMC) 1 in RF data, Laplacian of Gaussian (LoG) (sigma=4.0 mm) 3D
GLRLM Run Entropy in RF data, gradient GLCM Inverse Difference
Moment Normalized (IDMN) in MAP image, wavelet HL. GLCM Joint
Entropy in MAP image, wavelet HHL GLCM Correlation in RF data,
wavelet LLL GLCM IMC2 in RF data, wavelet LL. GLSZM Small Area Low
Gray Level Emphasis in MAP image, and square GLRLM Run Entropy in
MAP image. These features were labeled as F1 to F8 for better
discussion.

We categorized these features into three groups based on our ob-
servations and comparison of PA images and quantified feature values
from healthy and unhealthy feet. Feature values in each group were
filled with blue, brown, and green, respectively.

Firstly, we observed that healthy feet usually have greater vessel

Healthy

Unhealthy

F5 CM Correlation
F6 | GLCM IMC2
Features extracted from RF data

- Features extracted from MAP image

.

0 0.25 0.50 0.75 1
Normalized PA intensity

Fig. 9. Representative MAP images and feature distributions from healthy and unhealthy feet. Images of healthy feet were presented in the top row (blue box) while
images from unhealthy feet were shown in the bottom row (red box). The predicted probability of unhealthy was marked in the top right corner in red for each case.
The table adjacent to MAP images lists z-score normalized feature values. The annotations of each value are presented on the right side of the figure. Scale

bar: 20 mm.
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density, which can be validated by four extracted features (features in
blue cells). Feature GLCM IMC1 in RF data (F1) reflects correlation and
dependency in texture patterns, and we observed F1 has a higher value
in healthy feet, indicating greater global structural complexity which
can be caused by more vessels. Feature LoG (sigma = 4.0 mm) 3D
GLRLM Run Entropy in RF data (F2) quantifies randomness of runs in
edge-enhanced RF data, and it also has higher value in healthy feet,
demonstrating that healthy foot exhibits more complex edge informa-
tion, indicative of more vessels and sharper structures compared to
unhealthy feet. Feature gradient GLCM IDMN in MAP image (F3) has a
higher value in unhealthy feet, suggesting that unhealthy feet exhibit
more homogeneous local gradients and reduced rapid changes due to
fewer vessels. Feature HL. GLCM Joint Entropy in MAP image (F4) has a
higher value in healthy feet. Elevated joint entropy indicates that more
vessels in healthy feet contribute to texture complexity.

Secondly, we can also observe abnormal or ischemia tissue condi-
tions in unhealthy feet according to feature analysis (features in brown
boxes). Feature HHL GLCM Correlation in RF data (F5) measures linear
dependency between pixel intensities in the HHL wavelet band. We
found higher correlation values in unhealthy feet, suggesting a more
rapid change in high-frequency RF data from unhealthy feet, which in-
dicates disrupted or irregular textures. Meanwhile, Feature LLL. GLCM
IMC2 (F6) quantifies uniformity or predictability in texture patterns at a
coarse scale. The analysis demonstrates that it has a greater value in
healthy feet, which shows healthy feet have more intact and organized
tissue structures. Feature LL GLSZM Small Area Low Gray Level
Emphasis (F7) estimated small zones with low gray level intensities in
smoothed MAP images, and results pointed out that unhealthy feet have
higher feature value compared to healthy feet. It indicates a greater
number of small zones with low intensity in unhealthy foot tissue re-
gions, which might be due to ischemia tissue.

Besides, we also noticed there are more discontinued vessels in un-
healthy feet. It can be proved by feature square GLRLM Run Entropy in
MAP (F8, in green cell) which measures diversity in run lengths and gray
level combinations in intensity-enhanced images. Unhealthy feet have
greater feature value, demonstrating that vessel structures in unhealthy
feet are more heterogeneous and less continuous, which aligns with
reports of interrupted or disrupted vessels in feet with poor perfusion
[26]. A summary of the physiological representation of features can be
found in the supplementary material Tables S2 and S3.

In Fig. 9, feature analysis reveals consistent patterns between the
extracted feature values and visual observations from the images. In
MAP images of healthy feet (Fig. 9(a) to (c)), dense and continuous
vascular networks are clearly visible. For example, in Fig. 9(b), features
F1 and F2 reach their maximum values, while F3 reaches its minimum,
indicating a complex vascular structure with well-defined edges and
strong local gradients resulting from the rich vasculature. In contrast,
MAP images of unhealthy feet exhibit distinct alterations. In Fig. 9(d),
the vessel network appears sparse, consistent with low F1 and F2 values.
At the same time, high F7 and F8 values correspond to blurred vessel
boundaries and discontinuous structures, suggesting impaired vessel
integrity and the presence of small ischemic tissue regions. In Fig. 9(e),
although a relatively dense and sharp vascular network is present, the
vessels appear tortuous and exhibit variable brightness along their paths
(with bright spots on the vessels). This visual pattern aligns with the
highest F5 and lowest F6 values, which are indicative of irregular
texture patterns. Such tortuous vessel morphology may reflect the
development of collateral (bypass) micro vessels in response to major
vessel occlusion, a compensatory mechanism previously reported in
ischemic tissues [54]. Finally, Fig. 9(f) shows poorly defined vessels,
consistent with the lowest F2 and elevated F5 values, reflecting a loss of
edge information and signs of tissue disruption. Overall, these findings
demonstrate that the extracted radiomics features effectively capture
physiological alterations associated with perfusion status in clinical PA
foot imaging.
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4. Discussion

In this study, we propose a radiomics-based method to predict the
perfusion condition of foot ulcer patients using clinically acquired PA
images. The automated workflow begins with the preprocessing of the
acquired data, followed by the extraction of radiomics features from
both the raw RF data and the reconstructed MAP images. These features
are subsequently refined through a reproducibility test, the U test, and
correlation analysis. We then ranked the importance of features using a
proposed integrated score that combines the mRMR method and the
ReliefF algorithm. A prediction model was built based on eight selected
features. The optimized model achieved an AUC of 0.90 on the training
set and 0.94 on the test set, demonstrating its effectiveness in accurately
predicting perfusion conditions from PA images. Additionally, we
compared the optimized model with alternative models developed using
different feature selection strategies by evaluating both AUC and DCA.
The results indicate that the optimized model outperformed the others in
classification performance and provided the highest clinical utility.

Since there is no widely accepted and publicly available clinical PA
foot imaging dataset, we constructed a dataset consisting of over 300
clinical samples from more than 100 unique feet. Compared to previous
studies that were limited by small sample sizes or conducted only on
healthy volunteers, our dataset offers significant advantages for devel-
oping machine learning models. These advantages include improved
model accuracy, reduced overfitting, and enhanced generalization.

We extracted over 2000 radiomics features from both 3D RF data and
2D reconstructed MAP images, providing a comprehensive and diverse
feature set. Unlike traditional metrics such as vessel density or vessel
occupancy, radiomics features can capture subtle image characteristics
that are not easily detected by the human eye. These hidden features,
often associated with tissue heterogeneity and underlying biological
changes, can offer valuable insights into disease processes. Furthermore,
features extracted directly from RF data may contain more informative
content, as reconstruction algorithms can potentially discard important
details.

The entire workflow, including preprocessing, feature extraction and
selection, and model building, is fully automatic. This removes human
involvement and greatly improves the method’s consistency and reli-
ability. Notably, the optimized model achieved high AUC and great
clinical net benefit, indicating strong predictive performance for
assessing perfusion conditions and highlighting its potential for clinical
application. Additionally, we analyzed the physiological representations
of the selected features and found that the optimized model primarily
focused on vessel density, abnormal tissue structures, and disrupted
vessels to make predictions.

Despite the encouraging results, there are still several limitations
that can be addressed in future work. Firstly, the dataset used in this
study, while being the largest in photoacoustic-based foot imaging, is
still much smaller than radiomic studies in other medical imaging mo-
dalities [52]. The limited data size may affect the generalizability of the
findings. This limitation can be mitigated by continuing clinical data
collection to expand the dataset. Secondly, the current model is
restricted to binary classification due to the absence of detailed clinical
scoring as ground truth. This issue could be addressed by incorporating
transcutaneous oxygen pressure (TcPO2) measurements, which would
provide quantitative reference values for perfusion assessment and
enable more nuanced classification. Finally, the lack of longitudinal
study design prevents the evaluation of perfusion changes over time.
Future studies incorporating longitudinal data would be valuable for
tracking disease progression and assessing the temporal dynamics of
perfusion status.

5. Conclusion

In summary, this study presents a radiomics-based framework for
predicting perfusion conditions in foot tissues using PA imaging. By
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extracting over 2000 quantitative features from both raw RF data and
reconstructed MAP images acquired with a single-wavelength portable
PA system, our method captures complex image patterns that are diffi-
cult to detect visually. A fully automated workflow was implemented,
encompassing data preprocessing, reproducibility testing, statistical
filtering, and feature selection using an integrated scoring method. The
optimized KNN ensemble model, trained on 8 selected features, ach-
ieved an AUC of 0.90 on the training set and 0.94 on the test set. The
selected features revealed meaningful associations with perfusion-
related physiological changes, such as vessel density, tissue irregular-
ity, and vascular discontinuity. The proposed approach demonstrates
strong predictive performance and clinical relevance, offering a robust
and interpretable solution for perfusion assessment in photoacoustic
foot imaging.
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